|
import gradio as gr |
|
import modin.pandas as pd |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
from diffusers import AutoPipelineForImage2Image |
|
from diffusers.utils import load_image |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16) if torch.cuda.is_available() else AutoPipelineForImage2Image.from_pretrained("stabilityai/sdxl-turbo") |
|
pipe = pipe.to(device) |
|
|
|
def resize(value,img): |
|
img = Image.open(img) |
|
img = img.resize((value,value)) |
|
return img |
|
|
|
def infer(source_img, prompt, steps, seed, Strength): |
|
generator = torch.Generator(device).manual_seed(seed) |
|
source_image = resize(512, source_img) |
|
source_image.save('source.png') |
|
image = pipe(prompt, image=source_image, strength=Strength, guidance_scale=0.0, num_inference_steps=steps).images[0] |
|
return image |
|
|
|
gr.Interface(fn=infer, inputs=[gr.Image(sources=["upload", "webcam", "clipboard"], type="pil"l, label="Raw Image."), |
|
gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), |
|
gr.Slider(2, 5, value = 2, step = 1, label = 'Number of Iterations'), |
|
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True), |
|
gr.Slider(label='Strength', minimum = .5, maximum = 1, step = .05, value = .5)], |
|
outputs='image', title = "Stable Diffusion XL Turbo Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 1.0 see https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0 <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch() |