Manjushri's picture
Update app.py
725f404
raw
history blame
2.27 kB
import gradio as gr
import modin.pandas as pd
import torch
import numpy as np
from PIL import Image
from diffusers import DiffusionPipeline
from huggingface_hub import login
import os
login(token=os.environ.get('HF_KEY'))
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", safety_checker=None)
pipe = pipe.to(device)
def resize(value,img):
img = Image.open(img)
img = img.resize((value,value))
return img
def infer(source_img, prompt, negative_prompt, guide, steps, seed, Strength):
generator = torch.Generator(device).manual_seed(seed)
source_image = resize(768, source_img)
source_image.save('source.png')
image = pipe(prompt, negative_prompt=negative_prompt, image=source_image, strength=Strength, guidance_scale=guide, num_inference_steps=steps).images[0]
return image
gr.Interface(fn=infer, inputs=[gr.Image(source="upload", type="filepath", label="Raw Image. Must Be .png"), gr.Textbox(label = 'Prompt Input Text. 77 Token (Keyword or Symbol) Maximum'), gr.Textbox(label='What you Do Not want the AI to generate.'),
gr.Slider(2, 15, value = 7, label = 'Guidance Scale'),
gr.Slider(1, 25, value = 10, step = 1, label = 'Number of Iterations'),
gr.Slider(label = "Seed", minimum = 0, maximum = 987654321987654321, step = 1, randomize = True),
gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .5)],
outputs='image', title = "Stable Diffusion XL 0.9 Image to Image Pipeline CPU", description = "For more information on Stable Diffusion XL 0.9 see https://github.com/Stability-AI/stablediffusion <br><br>Upload an Image (<b>MUST Be .PNG and 512x512 or 768x768</b>) enter a Prompt, or let it just do its Thing, then click submit. 10 Iterations takes about ~900-1200 seconds currently. For more informationon about Stable Diffusion or Suggestions for prompts, keywords, artists or styles see https://github.com/Maks-s/sd-akashic", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").queue(max_size=5).launch()