ManojINaik commited on
Commit
d75d863
·
verified ·
1 Parent(s): 4b3c08b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -48
app.py CHANGED
@@ -1,57 +1,11 @@
1
  from fastapi import FastAPI
2
  from pydantic import BaseModel
3
- from huggingface_hub import InferenceClient
4
- import uvicorn
5
 
6
  app = FastAPI()
7
 
8
- # Initialize the InferenceClient with the specified model
9
- client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
10
-
11
- # Define the structure of the request body
12
  class CourseRequest(BaseModel):
13
  course_name: str
14
- history: list = [] # Keeping history optional
15
- temperature: float = 0.0
16
- max_new_tokens: int = 1048
17
- top_p: float = 0.15
18
- repetition_penalty: float = 1.0
19
-
20
- # Format the prompt for the model
21
- def format_prompt(course_name, history):
22
- prompt = "<s>"
23
- for user_prompt, bot_response in history:
24
- prompt += f"[INST] {user_prompt} [/INST] {bot_response} </s> "
25
- prompt += f"[INST] Generate a roadmap for the course: {course_name} [/INST]"
26
- return prompt
27
-
28
- # Generate text using the specified parameters
29
- def generate(course_request: CourseRequest):
30
- temperature = max(float(course_request.temperature), 1e-2)
31
- top_p = float(course_request.top_p)
32
-
33
- generate_kwargs = {
34
- 'temperature': temperature,
35
- 'max_new_tokens': course_request.max_new_tokens,
36
- 'top_p': top_p,
37
- 'repetition_penalty': course_request.repetition_penalty,
38
- 'do_sample': True,
39
- 'seed': 42,
40
- }
41
 
42
- formatted_prompt = format_prompt(course_request.course_name, course_request.history)
43
- stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
44
- output = ""
45
-
46
- for response in stream:
47
- output += response.token.text
48
- return output
49
-
50
- # Define the API endpoint for generating course roadmaps
51
- @app.post("/generate-roadmap/")
52
  async def generate_roadmap(course_request: CourseRequest):
53
- return {"roadmap": generate(course_request)}
54
-
55
- # Run the application (uncomment the next two lines if running this as a standalone script)
56
- # if __name__ == "__main__":
57
- # uvicorn.run(app, host="0.0.0.0", port=8000)
 
1
  from fastapi import FastAPI
2
  from pydantic import BaseModel
 
 
3
 
4
  app = FastAPI()
5
 
 
 
 
 
6
  class CourseRequest(BaseModel):
7
  course_name: str
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ @app.post("/generate/")
 
 
 
 
 
 
 
 
 
10
  async def generate_roadmap(course_request: CourseRequest):
11
+ return {"roadmap": f"Roadmap for {course_request.course_name}"}