Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
@@ -1,50 +1,65 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from huggingface_hub import InferenceClient
|
4 |
-
import
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
# Initialize the
|
9 |
client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
10 |
|
|
|
11 |
class CourseRequest(BaseModel):
|
12 |
course_name: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
def format_prompt(course_name: str):
|
15 |
-
return f"As an expert in education, please generate a detailed roadmap for the course '{course_name}'. Include key topics."
|
16 |
|
17 |
-
def generate_roadmap(item: CourseRequest):
|
18 |
-
prompt = format_prompt(item.course_name)
|
19 |
-
stream = client.text_generation(prompt, max_new_tokens=200)
|
20 |
-
output = ""
|
21 |
|
22 |
-
for response in stream:
|
23 |
-
output += response.token.text
|
24 |
|
25 |
-
return output
|
26 |
|
27 |
-
def create_diagram(roadmap_text: str):
|
28 |
-
dot = graphviz.Digraph()
|
29 |
|
30 |
-
# Split the roadmap text into lines or sections for diagram creation
|
31 |
-
lines = roadmap_text.split('\n')
|
32 |
-
for i, line in enumerate(lines):
|
33 |
-
dot.node(str(i), line.strip()) # Create a node for each topic
|
34 |
|
35 |
-
if i > 0:
|
36 |
-
dot.edge(str(i - 1), str(i)) # Connect nodes sequentially
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
from huggingface_hub import InferenceClient
|
4 |
+
import uvicorn
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
+
# Initialize the InferenceClient with the specified model
|
9 |
client = InferenceClient("nvidia/Llama-3.1-Nemotron-70B-Instruct-HF")
|
10 |
|
11 |
+
# Define the structure of the request body
|
12 |
class CourseRequest(BaseModel):
|
13 |
course_name: str
|
14 |
+
history: list = [] # Keeping history optional
|
15 |
+
temperature: float = 0.0
|
16 |
+
max_new_tokens: int = 1048
|
17 |
+
top_p: float = 0.15
|
18 |
+
repetition_penalty: float = 1.0
|
19 |
+
|
20 |
+
# Format the prompt for the model
|
21 |
+
def format_prompt(course_name, history):
|
22 |
+
prompt = "<s>"
|
23 |
+
for user_prompt, bot_response in history:
|
24 |
+
prompt += f"[INST] {user_prompt} [/INST] {bot_response} </s> "
|
25 |
+
prompt += f"[INST] Generate a roadmap for the course: {course_name} [/INST]"
|
26 |
+
return prompt
|
27 |
+
|
28 |
+
# Generate text using the specified parameters
|
29 |
+
def generate(course_request: CourseRequest):
|
30 |
+
temperature = max(float(course_request.temperature), 1e-2)
|
31 |
+
top_p = float(course_request.top_p)
|
32 |
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
34 |
|
|
|
|
|
35 |
|
|
|
36 |
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
39 |
|
40 |
+
generate_kwargs = {
|
41 |
+
'temperature': temperature,
|
42 |
+
'max_new_tokens': course_request.max_new_tokens,
|
43 |
+
'top_p': top_p,
|
44 |
+
'repetition_penalty': course_request.repetition_penalty,
|
45 |
+
'do_sample': True,
|
46 |
+
'seed': 42,
|
47 |
+
}
|
48 |
|
49 |
+
formatted_prompt = format_prompt(course_request.course_name, course_request.history)
|
50 |
+
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
51 |
+
output = ""
|
52 |
+
|
53 |
+
for response in stream:
|
54 |
+
output += response.token.text
|
55 |
+
|
56 |
+
return output
|
57 |
|
58 |
+
# Define the API endpoint for generating course roadmaps
|
59 |
+
@app.post("/generate-roadmap/")
|
60 |
+
async def generate_roadmap(course_request: CourseRequest):
|
61 |
+
return {"roadmap": generate(course_request)}
|
62 |
|
63 |
+
# Run the application (uncomment the next two lines if running this as a standalone script)
|
64 |
+
# if __name__ == "__main__":
|
65 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|