Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load the model | |
model_name = "gpt2" | |
generator = pipeline("text-generation", model=model_name) | |
# Inference function | |
def generate_response(prompt): | |
# Generate text with specific parameters | |
response = generator( | |
prompt, | |
max_length=150, # Increase max length for more comprehensive responses | |
num_return_sequences=1, | |
temperature=0.7, # Lower for more deterministic responses | |
top_k=50, # Consider the top 50 tokens for diversity | |
top_p=0.95 # Cumulative probability for diversity | |
) | |
return response[0]['generated_text'].strip() # Clean up the output | |
# Gradio interface | |
interface = gr.Interface( | |
fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="Conversational LLM", | |
description="Enter a prompt to generate a relevant and coherent response." | |
) | |
# Launch the interface | |
interface.launch() | |