import gradio as gr from transformers import pipeline # Load a more suitable model for conversational responses model_name = "gpt2" # You might want to try 'gpt-neo' or 'gpt-3.5-turbo' if available generator = pipeline("text-generation", model=model_name) # Inference function def generate_response(prompt): # Generate text with a more structured approach response = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text'] return response.strip() # Clean up any leading/trailing whitespace # Gradio interface interface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="Conversational LLM", description="Enter a message to receive a relevant response." ) # Launch the interface interface.launch()