import gradio as gr from transformers import pipeline # Load the model model_name = "gpt2" generator = pipeline("text-generation", model=model_name) # Inference function def generate_response(prompt): # Generate text with specific parameters response = generator( prompt, max_length=150, # Increase max length for more comprehensive responses num_return_sequences=1, temperature=0.7, # Lower for more deterministic responses top_k=50, # Consider the top 50 tokens for diversity top_p=0.95 # Cumulative probability for diversity ) return response[0]['generated_text'].strip() # Clean up the output # Gradio interface interface = gr.Interface( fn=generate_response, inputs="text", outputs="text", title="Conversational LLM", description="Enter a prompt to generate a relevant and coherent response." ) # Launch the interface interface.launch()