Spaces:
Runtime error
Runtime error
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from huggingface_hub import InferenceClient | |
app = FastAPI() | |
# Use your model | |
client = InferenceClient("ManojINaik/codsw") | |
class Item(BaseModel): | |
prompt: str | |
history: list | |
system_prompt: str | |
temperature: float = 0.0 | |
max_new_tokens: int = 1048 | |
top_p: float = 0.15 | |
repetition_penalty: float = 1.0 | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(item: Item): | |
try: | |
# Ensure valid temperature | |
temperature = max(float(item.temperature), 1e-2) | |
top_p = float(item.top_p) | |
generate_kwargs = { | |
"temperature": temperature, | |
"max_new_tokens": item.max_new_tokens, | |
"top_p": top_p, | |
"repetition_penalty": item.repetition_penalty, | |
"do_sample": True, | |
"seed": 42, | |
} | |
# Format the prompt | |
formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) | |
# Call text_generation on your model (correct argument: formatted_prompt) | |
stream = client.text_generation( | |
formatted_prompt, # Use the formatted prompt directly | |
**generate_kwargs, | |
stream=True, | |
) | |
output = "".join([response.token.text for response in stream]) | |
return output | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}") | |
async def generate_text(item: Item): | |
return {"response": generate(item)} | |