from fastapi import FastAPI, HTTPException from pydantic import BaseModel from huggingface_hub import InferenceClient app = FastAPI() # Use your model client = InferenceClient("ManojINaik/codsw") class Item(BaseModel): prompt: str history: list system_prompt: str temperature: float = 0.0 max_new_tokens: int = 1048 top_p: float = 0.15 repetition_penalty: float = 1.0 def format_prompt(message, history): prompt = "" for user_prompt, bot_response in history: prompt += f"[INST] {user_prompt} [/INST]" prompt += f" {bot_response} " prompt += f"[INST] {message} [/INST]" return prompt def generate(item: Item): try: # Ensure valid temperature temperature = max(float(item.temperature), 1e-2) top_p = float(item.top_p) generate_kwargs = { "temperature": temperature, "max_new_tokens": item.max_new_tokens, "top_p": top_p, "repetition_penalty": item.repetition_penalty, "do_sample": True, "seed": 42, } # Format the prompt formatted_prompt = format_prompt(f"{item.system_prompt}, {item.prompt}", item.history) # Call text_generation on your model (correct argument: formatted_prompt) stream = client.text_generation( formatted_prompt, # Use the formatted prompt directly **generate_kwargs, stream=True, ) output = "".join([response.token.text for response in stream]) return output except Exception as e: raise HTTPException(status_code=500, detail=f"Internal error: {str(e)}") @app.post("/generate/") async def generate_text(item: Item): return {"response": generate(item)}