Spaces:
Sleeping
Sleeping
File size: 1,704 Bytes
6f7d7b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and tokenizer
model_name = "Qwen/Qwen2.5-Coder-32B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Function to interact with the model
def chat_with_model(user_input):
prompt = user_input
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
# Use apply_chat_template to format messages for the model
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
# Tokenize the input and send it to the model
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the response from the model
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
# Decode the generated response
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
# Create the Gradio interface
iface = gr.Interface(
fn=chat_with_model,
inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."),
outputs="text",
title="Qwen2.5-Coder Chatbot",
description="A chatbot using Qwen2.5-Coder for code generation, reasoning, and fixing tasks."
)
# Launch the interface
iface.launch() |