Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,33 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
import torch
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
model = AutoModelForCausalLM.from_pretrained(
|
8 |
-
model_name,
|
9 |
-
torch_dtype="auto",
|
10 |
-
device_map="auto"
|
11 |
-
)
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
|
14 |
-
# Function to interact with the model
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
|
19 |
-
{"role": "user", "content": prompt}
|
20 |
-
]
|
21 |
-
|
22 |
-
# Use apply_chat_template to format messages for the model
|
23 |
-
text = tokenizer.apply_chat_template(
|
24 |
-
messages,
|
25 |
-
tokenize=False,
|
26 |
-
add_generation_prompt=True
|
27 |
-
)
|
28 |
-
|
29 |
-
# Tokenize the input and send it to the model
|
30 |
-
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
**model_inputs,
|
35 |
-
max_new_tokens=512
|
36 |
-
)
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
41 |
-
]
|
42 |
|
43 |
-
response
|
|
|
44 |
|
45 |
-
return
|
46 |
|
47 |
-
# Create the Gradio interface
|
48 |
iface = gr.Interface(
|
49 |
-
fn=
|
50 |
-
inputs=gr.Textbox(lines=
|
51 |
outputs="text",
|
52 |
title="Qwen2.5-Coder Chatbot",
|
53 |
-
description="A chatbot using Qwen2.5-Coder for code generation,
|
54 |
)
|
55 |
|
56 |
-
# Launch the interface
|
57 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
|
|
3 |
|
4 |
+
# Initialize the pipeline for code generation and assistance
|
5 |
+
pipe = pipeline("text-generation", model="Qwen/Qwen2.5-Coder-32B-Instruct")
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
# Function to interact with the model for code-related assistance
|
8 |
+
def code_assistance(user_input):
|
9 |
+
# Define the system message to set the context
|
10 |
+
system_message = "You are Qwen, a code assistant created by Alibaba Cloud. You assist with code generation, debugging, and explanation tasks."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Format the prompt with the system message and user input (code-related query)
|
13 |
+
prompt = f"{system_message}\nUser: {user_input}\nAssistant (Code Assistance):"
|
|
|
|
|
|
|
14 |
|
15 |
+
# Use the pipeline to generate the response for code assistance
|
16 |
+
response = pipe(prompt, max_length=512, num_return_sequences=1)
|
|
|
|
|
17 |
|
18 |
+
# Extract and clean the response to return only the assistant's code suggestion or explanation
|
19 |
+
generated_response = response[0]['generated_text'].split("Assistant (Code Assistance):")[1].strip()
|
20 |
|
21 |
+
return generated_response
|
22 |
|
23 |
+
# Create the Gradio interface for the code assistance chatbot
|
24 |
iface = gr.Interface(
|
25 |
+
fn=code_assistance,
|
26 |
+
inputs=gr.Textbox(lines=5, placeholder="Ask for code help..."),
|
27 |
outputs="text",
|
28 |
title="Qwen2.5-Coder Chatbot",
|
29 |
+
description="A chatbot using Qwen2.5-Coder for code generation, debugging, and explanation tasks."
|
30 |
)
|
31 |
|
32 |
+
# Launch the Gradio interface
|
33 |
+
iface.launch()
|