import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer model_name = "Qwen/Qwen2.5-Coder-32B-Instruct" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) # Function to interact with the model def chat_with_model(user_input): prompt = user_input messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] # Use apply_chat_template to format messages for the model text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Tokenize the input and send it to the model model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the response from the model generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) # Decode the generated response generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response # Create the Gradio interface iface = gr.Interface( fn=chat_with_model, inputs=gr.Textbox(lines=2, placeholder="Ask me anything..."), outputs="text", title="Qwen2.5-Coder Chatbot", description="A chatbot using Qwen2.5-Coder for code generation, reasoning, and fixing tasks." ) # Launch the interface iface.launch()