File size: 2,545 Bytes
dd6777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
import torch
from transformers import pipeline
import pandas as pd
import re
# Load pre-trained model for Named Entity Recognition (NER) to extract details
nlp = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english", framework="pt")
def parse_resume(resume_text):
"""Parse the resume and extract details like name, email, phone, and skills."""
# Define regex for phone and email extraction
phone_pattern = r'\(?\d{3}\)?[-.\s]?\d{3}[-.\s]?\d{4}'
email_pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
# Extract phone and email using regex
phone = re.findall(phone_pattern, resume_text)
email = re.findall(email_pattern, resume_text)
# Extract named entities for skills
entities = nlp(resume_text)
skills = [entity['word'] for entity in entities if 'MISC' in entity['entity']]
# Handle case if no skills found
skills = ", ".join(skills) if skills else "No skills found"
# Create a dictionary of parsed data (exclude Experience, Education, Certifications)
parsed_data = {
"Phone": phone[0] if phone else "Not found",
"Email": email[0] if email else "Not found",
"Skills": skills,
}
return parsed_data
def process_resumes(csv_file):
"""Process a CSV file of resumes and output a single Excel file."""
# Read the CSV file
df = pd.read_csv(csv_file.name)
# Ensure the column with resume text is named 'Resume' (you can adjust this as needed)
if 'Resume' not in df.columns:
return "Error: The CSV file must contain a 'Resume' column."
all_parsed_data = []
# Loop through each row in the CSV and parse the resume text
for _, row in df.iterrows():
resume_text = row['Resume'] # Assuming the column name is 'Resume'
parsed_info = parse_resume(resume_text)
all_parsed_data.append(parsed_info)
# Convert the parsed data into a pandas DataFrame
parsed_df = pd.DataFrame(all_parsed_data)
# Save the DataFrame to an Excel file
output_file = "parsed_resumes.xlsx"
parsed_df.to_excel(output_file, index=False)
return output_file
# Define Gradio interface
gr.Interface(
fn=process_resumes,
inputs=gr.File(file_count="single", label="Upload Resume CSV"),
outputs=gr.File(label="Download Parsed Data (Excel)"),
title="AI Resume Parser",
description="Upload a CSV file containing resume texts to extract details like Name, Email, Phone, and Skills. The results will be saved in an Excel file."
).launch() |