Manojajj commited on
Commit
7ddce15
·
verified ·
1 Parent(s): 75da080

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -4
app.py CHANGED
@@ -5,9 +5,14 @@ from transformers import pipeline
5
  import pandas as pd
6
  from huggingface_hub import login
7
 
8
- # Log in to Hugging Face using your API token (if needed for private models)
9
- # You can generate an API token from https://huggingface.co/settings/tokens
10
- login(token="your_huggingface_token")
 
 
 
 
 
11
 
12
  # Load the model for Named Entity Recognition (NER)
13
  # You can replace 'dbmdz/bert-large-cased-finetuned-conll03-english' with any other model if needed
@@ -68,10 +73,33 @@ def batch_process_resumes(pdf_files):
68
  # Gradio interface
69
  with gr.Blocks() as demo:
70
  gr.Markdown("### AI Resume Parser")
 
 
 
 
 
71
  file_input = gr.File(file_count="multiple", label="Upload Resumes (PDFs)")
 
 
72
  output = gr.Textbox(label="Result")
 
 
73
  process_button = gr.Button("Process Resumes")
74
 
75
- process_button.click(batch_process_resumes, inputs=file_input, outputs=output)
 
 
 
 
 
 
 
 
 
 
 
 
 
76
 
 
77
  demo.launch()
 
5
  import pandas as pd
6
  from huggingface_hub import login
7
 
8
+ # Function to login using Hugging Face API token
9
+ def login_with_token(hf_token):
10
+ """Login to Hugging Face using provided token"""
11
+ try:
12
+ login(token=hf_token)
13
+ return "Logged in successfully!"
14
+ except Exception as e:
15
+ return f"Error: {str(e)}"
16
 
17
  # Load the model for Named Entity Recognition (NER)
18
  # You can replace 'dbmdz/bert-large-cased-finetuned-conll03-english' with any other model if needed
 
73
  # Gradio interface
74
  with gr.Blocks() as demo:
75
  gr.Markdown("### AI Resume Parser")
76
+
77
+ # User input for Hugging Face token
78
+ hf_token_input = gr.Textbox(label="Hugging Face Token", placeholder="Enter your Hugging Face API Token here")
79
+
80
+ # File input for resume files
81
  file_input = gr.File(file_count="multiple", label="Upload Resumes (PDFs)")
82
+
83
+ # Output for results
84
  output = gr.Textbox(label="Result")
85
+
86
+ # Process button that triggers the login and resume parsing
87
  process_button = gr.Button("Process Resumes")
88
 
89
+ # Function call when button is clicked
90
+ def process_resumes(hf_token, pdf_files):
91
+ # Attempt to log in with provided token
92
+ login_message = login_with_token(hf_token)
93
+
94
+ # If login is successful, process resumes
95
+ if "Error" not in login_message:
96
+ result_message = batch_process_resumes(pdf_files)
97
+ return login_message + "\n" + result_message
98
+ else:
99
+ return login_message
100
+
101
+ # Set up the button click event
102
+ process_button.click(process_resumes, inputs=[hf_token_input, file_input], outputs=output)
103
 
104
+ # Launch the Gradio interface
105
  demo.launch()