Update app.py
Browse files
app.py
CHANGED
@@ -31,9 +31,17 @@ def parse_resume(pdf_file):
|
|
31 |
# Extract text from PDF
|
32 |
resume_text = extract_text_from_pdf(pdf_file)
|
33 |
|
|
|
|
|
|
|
|
|
34 |
# Use the NER model to identify entities in the resume
|
35 |
entities = nlp(resume_text)
|
36 |
|
|
|
|
|
|
|
|
|
37 |
# Initialize empty fields
|
38 |
name = email = phone = education = skills = experience = None
|
39 |
|
@@ -50,6 +58,9 @@ def parse_resume(pdf_file):
|
|
50 |
elif entity['label'] == 'MISC':
|
51 |
skills = entity['word'] # Example for skills or qualifications
|
52 |
|
|
|
|
|
|
|
53 |
return {
|
54 |
'Name': name,
|
55 |
'Email': email,
|
@@ -64,11 +75,18 @@ def batch_process_resumes(pdf_files):
|
|
64 |
all_resumes = []
|
65 |
for pdf_file in pdf_files:
|
66 |
resume_info = parse_resume(pdf_file)
|
67 |
-
|
|
|
|
|
|
|
68 |
|
69 |
# Convert to DataFrame
|
70 |
df = pd.DataFrame(all_resumes)
|
71 |
|
|
|
|
|
|
|
|
|
72 |
# Define the file path for the Excel file
|
73 |
output_file = "/tmp/parsed_resumes.xlsx"
|
74 |
|
|
|
31 |
# Extract text from PDF
|
32 |
resume_text = extract_text_from_pdf(pdf_file)
|
33 |
|
34 |
+
# Log the extracted text for debugging
|
35 |
+
print("Extracted Text from Resume:")
|
36 |
+
print(resume_text[:500]) # Print the first 500 characters for preview
|
37 |
+
|
38 |
# Use the NER model to identify entities in the resume
|
39 |
entities = nlp(resume_text)
|
40 |
|
41 |
+
# Log the NER output for debugging
|
42 |
+
print("NER Output:")
|
43 |
+
print(entities)
|
44 |
+
|
45 |
# Initialize empty fields
|
46 |
name = email = phone = education = skills = experience = None
|
47 |
|
|
|
58 |
elif entity['label'] == 'MISC':
|
59 |
skills = entity['word'] # Example for skills or qualifications
|
60 |
|
61 |
+
# Log the final parsed information for debugging
|
62 |
+
print(f"Parsed Info: Name={name}, Email={email}, Skills={skills}, Experience={experience}")
|
63 |
+
|
64 |
return {
|
65 |
'Name': name,
|
66 |
'Email': email,
|
|
|
75 |
all_resumes = []
|
76 |
for pdf_file in pdf_files:
|
77 |
resume_info = parse_resume(pdf_file)
|
78 |
+
|
79 |
+
# Only add the parsed resume info if there's meaningful data
|
80 |
+
if any(resume_info.values()): # Skip empty resume entries
|
81 |
+
all_resumes.append(resume_info)
|
82 |
|
83 |
# Convert to DataFrame
|
84 |
df = pd.DataFrame(all_resumes)
|
85 |
|
86 |
+
# If the DataFrame is empty, return a message indicating no data was found
|
87 |
+
if df.empty:
|
88 |
+
return "No valid resume information was parsed."
|
89 |
+
|
90 |
# Define the file path for the Excel file
|
91 |
output_file = "/tmp/parsed_resumes.xlsx"
|
92 |
|