Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pdfplumber
|
3 |
+
import re
|
4 |
+
import openpyxl
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# Function to extract text from PDF
|
8 |
+
def extract_text_from_pdf(pdf_path):
|
9 |
+
with pdfplumber.open(pdf_path) as pdf:
|
10 |
+
text = ''
|
11 |
+
for page in pdf.pages:
|
12 |
+
text += page.extract_text()
|
13 |
+
return text
|
14 |
+
|
15 |
+
# Load Llama model for parsing (replace with actual model path if available)
|
16 |
+
model_name = "meta-llama/Llama-3.1-70B-Instruct" # Replace with the model path or identifier
|
17 |
+
nlp = pipeline("text2text-generation", model=model_name)
|
18 |
+
|
19 |
+
# Function to parse the resume text for name, email, phone, and skills
|
20 |
+
def parse_resume(text):
|
21 |
+
# Define the prompts for each type of information
|
22 |
+
prompts = {
|
23 |
+
"name": "Extract the name from this resume:\n",
|
24 |
+
"email": "Extract the email address from this resume:\n",
|
25 |
+
"phone": "Extract the phone number from this resume:\n",
|
26 |
+
"skills": "Extract the technical skills from this resume:\n"
|
27 |
+
}
|
28 |
+
|
29 |
+
results = {}
|
30 |
+
|
31 |
+
for key, prompt in prompts.items():
|
32 |
+
# Get the model response for each field
|
33 |
+
response = nlp(prompt + text)
|
34 |
+
|
35 |
+
if key == 'email':
|
36 |
+
# Use regex to validate email format
|
37 |
+
email = re.findall(r'\S+@\S+', response[0]['generated_text'])
|
38 |
+
results[key] = email[0] if email else None
|
39 |
+
elif key == 'phone':
|
40 |
+
# Use regex to validate phone number format
|
41 |
+
phone = re.findall(r'\b\d{10,15}\b', response[0]['generated_text'])
|
42 |
+
results[key] = phone[0] if phone else None
|
43 |
+
elif key == 'skills':
|
44 |
+
# Extract technical skills
|
45 |
+
results[key] = response[0]['generated_text']
|
46 |
+
else:
|
47 |
+
results[key] = response[0]['generated_text']
|
48 |
+
|
49 |
+
return results
|
50 |
+
|
51 |
+
# Function to save parsed data to Excel file
|
52 |
+
def save_to_excel(parsed_data, output_file):
|
53 |
+
wb = openpyxl.Workbook()
|
54 |
+
ws = wb.active
|
55 |
+
ws.append(["Name", "Email", "Phone", "Skills"])
|
56 |
+
|
57 |
+
for data in parsed_data:
|
58 |
+
ws.append([data["name"], data["email"], data["phone"], data["skills"]])
|
59 |
+
|
60 |
+
wb.save(output_file)
|
61 |
+
|
62 |
+
# Function to process PDF files and output an Excel file
|
63 |
+
def process_pdfs(pdfs):
|
64 |
+
parsed_data = []
|
65 |
+
|
66 |
+
for pdf in pdfs:
|
67 |
+
# Extract text from the PDF
|
68 |
+
text = extract_text_from_pdf(pdf.name)
|
69 |
+
|
70 |
+
# Parse the text for relevant details
|
71 |
+
parsed_info = parse_resume(text)
|
72 |
+
|
73 |
+
# Add parsed information to the list
|
74 |
+
parsed_data.append(parsed_info)
|
75 |
+
|
76 |
+
# Save the parsed data to an Excel file
|
77 |
+
output_file = "parsed_resumes.xlsx"
|
78 |
+
save_to_excel(parsed_data, output_file)
|
79 |
+
|
80 |
+
return output_file
|
81 |
+
|
82 |
+
# Gradio interface setup
|
83 |
+
iface = gr.Interface(
|
84 |
+
fn=process_pdfs,
|
85 |
+
inputs=gr.File(file_count="multiple", type="file"),
|
86 |
+
outputs=gr.File(),
|
87 |
+
live=True
|
88 |
+
)
|
89 |
+
|
90 |
+
# Launch the Gradio app
|
91 |
+
iface.launch()
|