Mansuba's picture
Update app.py
6024488 verified
raw
history blame
13.4 kB
import torch
from transformers import CLIPModel, CLIPProcessor, AutoTokenizer, MarianMTModel, MarianTokenizer
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import numpy as np
from typing import List, Tuple, Optional, Dict, Any
import gradio as gr
from pathlib import Path
import json
import logging
from dataclasses import dataclass
import gc
import os
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class GenerationConfig:
num_images: int = 1
num_inference_steps: int = 50
guidance_scale: float = 7.5
seed: Optional[int] = None
class ModelCache:
def __init__(self, cache_dir: Path):
self.cache_dir = cache_dir
self.cache_dir.mkdir(parents=True, exist_ok=True)
# Set environment variables for better memory management
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
def load_model(self, model_id: str, load_func: callable, cache_name: str) -> Any:
try:
logger.info(f"Loading {cache_name}")
return load_func(model_id)
except Exception as e:
logger.error(f"Error loading model {cache_name}: {str(e)}")
raise
class EnhancedBanglaSDGenerator:
def __init__(
self,
banglaclip_weights_path: str,
cache_dir: str,
device: Optional[torch.device] = None
):
self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
# Set memory split for VRAM usage on CPU
self.memory_split = 0.5 # Use 50% of available VRAM
self.setup_memory_management()
self.cache = ModelCache(Path(cache_dir))
self._initialize_models(banglaclip_weights_path)
self._load_context_data()
def setup_memory_management(self):
"""Setup optimal memory management for CPU and VRAM"""
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(0).total_memory
torch.cuda.set_per_process_memory_fraction(self.memory_split)
# Optimize CPU memory
torch.set_num_threads(min(8, os.cpu_count() or 4))
torch.set_num_interop_threads(min(8, os.cpu_count() or 4))
def _initialize_models(self, banglaclip_weights_path: str):
try:
# Initialize translation models
self.bn2en_model_name = "Helsinki-NLP/opus-mt-bn-en"
self.translator = self.cache.load_model(
self.bn2en_model_name,
lambda x: MarianMTModel.from_pretrained(x, low_cpu_mem_usage=True),
"translator"
).to(self.device)
self.trans_tokenizer = MarianTokenizer.from_pretrained(self.bn2en_model_name)
# Initialize CLIP models
self.clip_model_name = "openai/clip-vit-base-patch32"
self.bangla_text_model = "csebuetnlp/banglabert"
self.banglaclip_model = self._load_banglaclip_model(banglaclip_weights_path)
self.processor = CLIPProcessor.from_pretrained(self.clip_model_name)
self.tokenizer = AutoTokenizer.from_pretrained(self.bangla_text_model)
# Initialize Stable Diffusion
self._initialize_stable_diffusion()
except Exception as e:
logger.error(f"Error initializing models: {str(e)}")
raise RuntimeError(f"Failed to initialize models: {str(e)}")
def _initialize_stable_diffusion(self):
"""Initialize Stable Diffusion pipeline with optimized settings."""
try:
self.pipe = self.cache.load_model(
"runwayml/stable-diffusion-v1-5",
lambda model_id: StableDiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float32,
safety_checker=None,
use_safetensors=True,
low_cpu_mem_usage=True,
),
"stable_diffusion"
)
# Optimize scheduler for speed
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True,
algorithm_type="dpmsolver++",
solver_order=2
)
# Memory optimizations
self.pipe.enable_attention_slicing(slice_size=1)
self.pipe.enable_vae_slicing()
self.pipe.enable_sequential_cpu_offload()
# VRAM optimization
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.pipe.enable_model_cpu_offload()
self.pipe = self.pipe.to(self.device)
except Exception as e:
logger.error(f"Error initializing Stable Diffusion: {str(e)}")
raise
def _load_banglaclip_model(self, weights_path: str) -> CLIPModel:
try:
if not Path(weights_path).exists():
raise FileNotFoundError(f"BanglaCLIP weights not found at {weights_path}")
clip_model = CLIPModel.from_pretrained(
self.clip_model_name,
low_cpu_mem_usage=True
)
state_dict = torch.load(weights_path, map_location=self.device)
cleaned_state_dict = {
k.replace('module.', '').replace('clip.', ''): v
for k, v in state_dict.items()
if k.replace('module.', '').replace('clip.', '').startswith(('text_model.', 'vision_model.'))
}
clip_model.load_state_dict(cleaned_state_dict, strict=False)
return clip_model.to(self.device)
except Exception as e:
logger.error(f"Failed to load BanglaCLIP model: {str(e)}")
raise
def _load_context_data(self):
"""Load location and scene context data."""
self.location_contexts = {
'কক্সবাজার': 'Cox\'s Bazar beach, longest natural sea beach in the world, sandy beach',
'সেন্টমার্টিন': 'Saint Martin\'s Island, coral island, tropical paradise',
'সুন্দরবন': 'Sundarbans mangrove forest, Bengal tigers, riverine forest'
}
self.scene_contexts = {
'সৈকত': 'beach, seaside, waves, sandy shore, ocean view',
'সমুদ্র': 'ocean, sea waves, deep blue water, horizon',
'পাহাড়': 'mountains, hills, valleys, scenic landscape'
}
def _translate_text(self, bangla_text: str) -> str:
"""Translate Bangla text to English."""
inputs = self.trans_tokenizer(bangla_text, return_tensors="pt", padding=True)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
with torch.no_grad(), torch.cpu.amp.autocast():
outputs = self.translator.generate(**inputs)
translated = self.trans_tokenizer.decode(outputs[0], skip_special_tokens=True)
return translated
def generate_image(
self,
bangla_text: str,
config: Optional[GenerationConfig] = None
) -> Tuple[List[Any], str]:
if not bangla_text.strip():
raise ValueError("Empty input text")
config = config or GenerationConfig()
try:
if config.seed is not None:
torch.manual_seed(config.seed)
# Clear memory before generation
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
enhanced_prompt = self._enhance_prompt(bangla_text)
negative_prompt = self._get_negative_prompt()
# Use mixed precision for faster generation
with torch.inference_mode(), torch.cpu.amp.autocast():
result = self.pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
num_images_per_prompt=config.num_images,
num_inference_steps=config.num_inference_steps,
guidance_scale=config.guidance_scale,
use_memory_efficient_attention=True,
use_memory_efficient_cross_attention=True
)
# Clear memory after generation
gc.collect()
torch.cuda.empty_cache() if torch.cuda.is_available() else None
return result.images, enhanced_prompt
except Exception as e:
logger.error(f"Error during image generation: {str(e)}")
raise
def _enhance_prompt(self, bangla_text: str) -> str:
"""Enhance prompt with context and style information."""
translated_text = self._translate_text(bangla_text)
contexts = []
contexts.extend(context for loc, context in self.location_contexts.items() if loc in bangla_text)
contexts.extend(context for scene, context in self.scene_contexts.items() if scene in bangla_text)
photo_style = [
"professional photography",
"high resolution",
"4k",
"detailed",
"realistic",
"beautiful composition"
]
all_parts = [translated_text] + contexts + photo_style
return ", ".join(dict.fromkeys(all_parts))
def _get_negative_prompt(self) -> str:
return (
"blurry, low quality, pixelated, cartoon, anime, illustration, "
"painting, drawing, artificial, fake, oversaturated, undersaturated"
)
def cleanup(self):
"""Clean up GPU memory"""
if hasattr(self, 'pipe'):
del self.pipe
if hasattr(self, 'banglaclip_model'):
del self.banglaclip_model
if hasattr(self, 'translator'):
del self.translator
torch.cuda.empty_cache()
gc.collect()
def create_gradio_interface():
"""Create and configure the Gradio interface."""
cache_dir = Path("model_cache")
generator = None
def initialize_generator():
nonlocal generator
if generator is None:
generator = EnhancedBanglaSDGenerator(
banglaclip_weights_path="banglaclip_model_epoch_10_quantized.pth",
cache_dir=str(cache_dir)
)
return generator
def cleanup_generator():
nonlocal generator
if generator is not None:
generator.cleanup()
generator = None
def generate_images(text: str, num_images: int, steps: int, guidance_scale: float, seed: Optional[int]) -> Tuple[List[Any], str]:
if not text.strip():
return None, "দয়া করে কিছু টেক্সট লিখুন"
try:
gen = initialize_generator()
config = GenerationConfig(
num_images=int(num_images),
num_inference_steps=int(steps),
guidance_scale=float(guidance_scale),
seed=int(seed) if seed else None
)
images, prompt = gen.generate_image(text, config)
cleanup_generator()
return images, prompt
except Exception as e:
logger.error(f"Error in Gradio interface: {str(e)}")
cleanup_generator()
return None, f"ছবি তৈরি ব্যর্থ হয়েছে: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=generate_images,
inputs=[
gr.Textbox(
label="বাংলা টেক্সট লিখুন",
placeholder="যেকোনো বাংলা টেক্সট লিখুন...",
lines=3
),
gr.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="ছবির সংখ্যা"
),
gr.Slider(
minimum=20,
maximum=100,
step=1,
value=50,
label="স্টেপস"
),
gr.Slider(
minimum=1.0,
maximum=20.0,
step=0.5,
value=7.5,
label="গাইডেন্স স্কেল"
),
gr.Number(
label="সীড (ঐচ্ছিক)",
precision=0
)
],
outputs=[
gr.Gallery(label="তৈরি করা ছবি"),
gr.Textbox(label="ব্যবহৃত প্রম্পট")
],
title="বাংলা টেক্সট থেকে ছবি তৈরি",
description="যেকোনো বাংলা টেক্সট দিয়ে উচ্চমানের ছবি তৈরি করুন"
)
return demo
if __name__ == "__main__":
# Set environment variables for better performance
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:512'
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
demo = create_gradio_interface()
demo.queue().launch(share=True)