Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2024 the HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch Idefics2 model.""" | |
import inspect | |
import math | |
from dataclasses import dataclass | |
from typing import Dict, List, Optional, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch import nn | |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | |
# from ... import PreTrainedModel | |
# from ...activations import ACT2FN | |
# from ...cache_utils import Cache, DynamicCache | |
# from ...modeling_attn_mask_utils import _prepare_4d_attention_mask | |
# from ...modeling_outputs import BaseModelOutput, ModelOutput | |
# from ...utils import ( | |
# add_start_docstrings, | |
# add_start_docstrings_to_model_forward, | |
# is_flash_attn_2_available, | |
# is_flash_attn_greater_or_equal_2_10, | |
# logging, | |
# replace_return_docstrings, | |
# ) | |
# from ..auto import AutoModel | |
# from .configuration_idefics2 import Idefics2Config, Idefics2VisionConfig | |
from transformers import PreTrainedModel | |
from transformers.activations import ACT2FN | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask | |
from transformers.modeling_outputs import BaseModelOutput, ModelOutput, SequenceClassifierOutputWithPast | |
from transformers.utils import ( | |
add_start_docstrings, | |
add_start_docstrings_to_model_forward, | |
is_flash_attn_2_available, | |
is_flash_attn_greater_or_equal_2_10, | |
logging, | |
replace_return_docstrings, | |
) | |
from transformers.models.auto import AutoModel | |
from transformers.models.idefics2.configuration_idefics2 import Idefics2Config, Idefics2VisionConfig | |
if is_flash_attn_2_available(): | |
from flash_attn import flash_attn_func, flash_attn_varlen_func | |
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa | |
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) | |
logger = logging.get_logger(__name__) | |
_CONFIG_FOR_DOC = "Idefics2Config" | |
IDEFICS2_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
"HuggingFaceM4/idefics2-8b", | |
# See all IDEFICS2 models at https://huggingface.co/models?filter=idefics2 | |
] | |
class Idefics2BaseModelOutputWithPast(ModelOutput): | |
""" | |
Base class for Idefics2 model's outputs that may also contain a past key/values (to speed up sequential decoding). | |
Args: | |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Sequence of hidden-states at the output of the last layer of the model. | |
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1, | |
hidden_size)` is output. | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if | |
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads, | |
encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if | |
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` | |
input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, | |
sequence_length, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver | |
""" | |
last_hidden_state: torch.FloatTensor = None | |
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->Idefics2 | |
class Idefics2CausalLMOutputWithPast(ModelOutput): | |
""" | |
Base class for Idefics2 causal language model (or autoregressive) outputs. | |
Args: | |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): | |
Language modeling loss (for next-token prediction). | |
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) | |
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see | |
`past_key_values` input) to speed up sequential decoding. | |
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): | |
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + | |
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. | |
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. | |
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): | |
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, | |
sequence_length)`. | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention | |
heads. | |
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): | |
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, | |
sequence_length, hidden_size)`. | |
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver | |
""" | |
loss: Optional[torch.FloatTensor] = None | |
logits: torch.FloatTensor = None | |
past_key_values: Optional[List[torch.FloatTensor]] = None | |
hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
attentions: Optional[Tuple[torch.FloatTensor]] = None | |
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None | |
class Idefics2VisionEmbeddings(nn.Module): | |
""" | |
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable | |
resolution. | |
The modifications are adapted from [Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution](https://arxiv.org/abs/2307.06304) | |
which allows treating images in their native aspect ratio and without the need to resize them to the same | |
fixed size. In particular, we start from the original pre-trained SigLIP model | |
(which uses images of fixed-size square images) and adapt it by training on images of variable resolutions. | |
""" | |
def __init__(self, config: Idefics2VisionConfig): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.image_size = config.image_size | |
self.patch_size = config.patch_size | |
self.patch_embedding = nn.Conv2d( | |
in_channels=config.num_channels, | |
out_channels=self.embed_dim, | |
kernel_size=self.patch_size, | |
stride=self.patch_size, | |
padding="valid", | |
) | |
self.num_patches_per_side = self.image_size // self.patch_size | |
self.num_patches = self.num_patches_per_side**2 | |
self.num_positions = self.num_patches | |
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim) | |
def forward(self, pixel_values: torch.FloatTensor, patch_attention_mask: torch.BoolTensor) -> torch.Tensor: | |
batch_size, _, max_im_h, max_im_w = pixel_values.shape | |
patch_embeds = self.patch_embedding(pixel_values) | |
embeddings = patch_embeds.flatten(2).transpose(1, 2) | |
max_nb_patches_h, max_nb_patches_w = max_im_h // self.patch_size, max_im_w // self.patch_size | |
boundaries = torch.arange(1 / self.num_patches_per_side, 1.0, 1 / self.num_patches_per_side) | |
position_ids = torch.full(size=(batch_size, max_nb_patches_h * max_nb_patches_w), fill_value=0) | |
for batch_idx, p_attn_mask in enumerate(patch_attention_mask): | |
nb_patches_h = p_attn_mask[:, 0].sum() | |
nb_patches_w = p_attn_mask[0].sum() | |
fractional_coords_h = torch.arange(0, 1 - 1e-6, 1 / nb_patches_h) | |
fractional_coords_w = torch.arange(0, 1 - 1e-6, 1 / nb_patches_w) | |
bucket_coords_h = torch.bucketize(fractional_coords_h, boundaries, right=True) | |
bucket_coords_w = torch.bucketize(fractional_coords_w, boundaries, right=True) | |
pos_ids = (bucket_coords_h[:, None] * self.num_patches_per_side + bucket_coords_w).flatten() | |
position_ids[batch_idx][p_attn_mask.view(-1).cpu()] = pos_ids | |
position_ids = position_ids.to(self.position_embedding.weight.device) | |
embeddings = embeddings + self.position_embedding(position_ids) | |
return embeddings | |
# Copied from transformers.models.siglip.modeling_siglip.SiglipAttention with Siglip->Idefics2Vision | |
class Idefics2VisionAttention(nn.Module): | |
"""Multi-headed attention from 'Attention Is All You Need' paper""" | |
# Copied from transformers.models.clip.modeling_clip.CLIPAttention.__init__ | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.embed_dim = config.hidden_size | |
self.num_heads = config.num_attention_heads | |
self.head_dim = self.embed_dim // self.num_heads | |
if self.head_dim * self.num_heads != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" | |
f" {self.num_heads})." | |
) | |
self.scale = self.head_dim**-0.5 | |
self.dropout = config.attention_dropout | |
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim) | |
# Ignore copy | |
self.is_causal = False | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
"""Input shape: Batch x Time x Channel""" | |
batch_size, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(batch_size, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
k_v_seq_len = key_states.shape[-2] | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scale | |
if attn_weights.size() != (batch_size, self.num_heads, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(batch_size, self.num_heads, q_len, k_v_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (batch_size, 1, q_len, k_v_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(batch_size, 1, q_len, k_v_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (batch_size, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(batch_size, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(batch_size, q_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights | |
class Idefics2VisionFlashAttention2(Idefics2VisionAttention): | |
""" | |
Idefics2Vision flash attention module. This module inherits from `Idefics2VisionAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
output_attentions = False | |
bsz, q_len, _ = hidden_states.size() | |
query_states = self.q_proj(hidden_states) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
# Flash attention requires the input to have the shape | |
# batch_size x seq_length x head_dim x hidden_dim | |
# therefore we just need to keep the original shape | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | |
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache | |
# to be able to avoid many of these transpose/reshape/view. | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
dropout_rate = self.dropout if self.training else 0.0 | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in the correct dtype just to be sure everything works as expected. | |
# This might slowdown training & inference so it is recommended to not cast the LayerNorms | |
# in fp32. (Idefics2VisionRMSNorm handles it correctly) | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
attn_output = self._flash_attention_forward( | |
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous() | |
attn_output = self.out_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward | |
def _flash_attention_forward( | |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
attn_output = flash_attn_func( | |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal | |
) | |
return attn_output | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | |
key_layer = index_first_axis( | |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
value_layer = index_first_axis( | |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k | |
) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
IDEFICS_VISION_ATTENTION_CLASSES = { | |
"eager": Idefics2VisionAttention, | |
"flash_attention_2": Idefics2VisionFlashAttention2, | |
} | |
# Copied from transformers.models.siglip.modeling_siglip.SiglipMLP with Siglip->Idefics2Vision | |
class Idefics2VisionMLP(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.config = config | |
self.activation_fn = ACT2FN[config.hidden_act] | |
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | |
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class Idefics2MLP(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
intermediate_size: int, | |
output_size: int, | |
hidden_act: str, | |
): | |
super().__init__() | |
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False) | |
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False) | |
self.down_proj = nn.Linear(intermediate_size, output_size, bias=False) | |
self.act_fn = ACT2FN[hidden_act] | |
def forward(self, x): | |
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | |
# Copied from transformers.models.siglip.modeling_siglip.SiglipMultiheadAttentionPoolingHead with Siglip->Idefics2 | |
class Idefics2MultiheadAttentionPoolingHead(nn.Module): | |
"""Multihead Attention Pooling.""" | |
def __init__(self, config: Idefics2VisionConfig): | |
super().__init__() | |
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size)) | |
self.attention = torch.nn.MultiheadAttention(config.hidden_size, config.num_attention_heads, batch_first=True) | |
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
# Ignore copy | |
self.mlp = Idefics2MLP( | |
hidden_size=config.hidden_size, | |
intermediate_size=config.intermediate_size, | |
hidden_act=config.hidden_act, | |
output_size=config.hidden_size, | |
) | |
def forward(self, hidden_state): | |
batch_size = hidden_state.shape[0] | |
probe = self.probe.repeat(batch_size, 1, 1) | |
hidden_state = self.attention(probe, hidden_state, hidden_state)[0] | |
residual = hidden_state | |
hidden_state = self.layernorm(hidden_state) | |
hidden_state = residual + self.mlp(hidden_state) | |
return hidden_state[:, 0] | |
class Idefics2EncoderLayer(nn.Module): | |
def __init__(self, config: Idefics2Config): | |
super().__init__() | |
self.embed_dim = config.hidden_size | |
self.self_attn = IDEFICS_VISION_ATTENTION_CLASSES[config._attn_implementation](config) | |
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
self.mlp = Idefics2VisionMLP(config) | |
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps) | |
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoderLayer.forward | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: torch.Tensor, | |
output_attentions: Optional[bool] = False, | |
) -> Tuple[torch.FloatTensor]: | |
""" | |
Args: | |
hidden_states (`torch.FloatTensor`): | |
Input to the layer of shape `(batch, seq_len, embed_dim)`. | |
attention_mask (`torch.FloatTensor`): | |
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. | |
output_attentions (`bool`, *optional*, defaults to `False`): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
""" | |
residual = hidden_states | |
hidden_states = self.layer_norm1(hidden_states) | |
hidden_states, attn_weights = self.self_attn( | |
hidden_states=hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = residual + hidden_states | |
residual = hidden_states | |
hidden_states = self.layer_norm2(hidden_states) | |
hidden_states = self.mlp(hidden_states) | |
hidden_states = residual + hidden_states | |
outputs = (hidden_states,) | |
if output_attentions: | |
outputs += (attn_weights,) | |
return outputs | |
# Copied from transformers.models.siglip.modeling_siglip.SiglipEncoder with Siglip->Idefics2 | |
class Idefics2Encoder(nn.Module): | |
""" | |
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a | |
[`Idefics2EncoderLayer`]. | |
Args: | |
config: Idefics2Config | |
""" | |
def __init__(self, config: Idefics2Config): | |
super().__init__() | |
self.config = config | |
self.layers = nn.ModuleList([Idefics2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) | |
self.gradient_checkpointing = False | |
# Ignore copy | |
def forward( | |
self, | |
inputs_embeds, | |
attention_mask: Optional[torch.Tensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
r""" | |
Args: | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. | |
This is useful if you want more control over how to convert `input_ids` indices into associated vectors | |
than the model's internal embedding lookup matrix. | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors | |
for more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
hidden_states = inputs_embeds | |
for encoder_layer in self.layers: | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if self.gradient_checkpointing and self.training: | |
layer_outputs = self._gradient_checkpointing_func( | |
encoder_layer.__call__, | |
hidden_states, | |
attention_mask, | |
output_attentions, | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class Idefics2VisionTransformer(nn.Module): | |
def __init__(self, config: Idefics2VisionConfig): | |
super().__init__() | |
embed_dim = config.hidden_size | |
self.config = config | |
self.embeddings = Idefics2VisionEmbeddings(config) | |
self.encoder = Idefics2Encoder(config) | |
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
def get_input_embeddings(self): | |
return self.embeddings | |
def set_input_embeddings(self, value): | |
self.embeddings = value | |
def forward( | |
self, | |
pixel_values, | |
patch_attention_mask: Optional[torch.BoolTensor] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, BaseModelOutput]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
batch_size = pixel_values.size(0) | |
if patch_attention_mask is None: | |
patch_size = self.config.patch_size | |
patch_attention_mask = torch.ones( | |
( | |
batch_size, | |
pixel_values.size(2) // patch_size, | |
pixel_values.size(3) // patch_size, | |
) | |
) | |
patch_attention_mask = patch_attention_mask.to(dtype=torch.bool, device=pixel_values.device) | |
hidden_states = self.embeddings(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) | |
patch_attention_mask = patch_attention_mask.view(batch_size, -1) | |
# The call to `_upad_input` in `_flash_attention_forward` is expensive | |
# So when the `patch_attention_mask` is full of 1s (i.e. attending to the whole sequence), | |
# avoiding passing the attention_mask, which is equivalent to attending to the full sequence | |
if not torch.any(~patch_attention_mask): | |
patch_attention_mask = None | |
elif not self._use_flash_attention_2: | |
patch_attention_mask = _prepare_4d_attention_mask(patch_attention_mask, hidden_states.dtype) | |
encoder_outputs = self.encoder( | |
inputs_embeds=hidden_states, | |
attention_mask=patch_attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
last_hidden_state = encoder_outputs[0] | |
last_hidden_state = self.post_layernorm(last_hidden_state) | |
if not return_dict: | |
return (last_hidden_state,) + encoder_outputs[1:] | |
return BaseModelOutput( | |
last_hidden_state=last_hidden_state, | |
hidden_states=encoder_outputs.hidden_states, | |
attentions=encoder_outputs.attentions, | |
) | |
# Copied from transformers.models.llama.modeling_llama.repeat_kv | |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | |
""" | |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | |
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | |
""" | |
batch, num_key_value_heads, slen, head_dim = hidden_states.shape | |
if n_rep == 1: | |
return hidden_states | |
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) | |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | |
# Copied from transformers.models.llama.modeling_llama._get_unpad_data | |
def _get_unpad_data(attention_mask): | |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | |
max_seqlen_in_batch = seqlens_in_batch.max().item() | |
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) | |
return ( | |
indices, | |
cu_seqlens, | |
max_seqlen_in_batch, | |
) | |
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Idefics2 | |
class Idefics2RMSNorm(nn.Module): | |
def __init__(self, hidden_size, eps=1e-6): | |
""" | |
Idefics2RMSNorm is equivalent to T5LayerNorm | |
""" | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(hidden_size)) | |
self.variance_epsilon = eps | |
def forward(self, hidden_states): | |
input_dtype = hidden_states.dtype | |
hidden_states = hidden_states.to(torch.float32) | |
variance = hidden_states.pow(2).mean(-1, keepdim=True) | |
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | |
return self.weight * hidden_states.to(input_dtype) | |
class Idefics2PerceiverAttention(nn.Module): | |
def __init__(self, config, layer_idx: Optional[int] = None) -> None: | |
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`""" | |
super().__init__() | |
self.layer_idx = None | |
self.hidden_size = config.text_config.hidden_size | |
self.num_heads = config.perceiver_config.resampler_n_heads | |
self.head_dim = config.perceiver_config.resampler_head_dim | |
self.num_key_value_heads = config.perceiver_config.num_key_value_heads | |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads | |
self.attention_dropout = config.perceiver_config.attention_dropout | |
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) | |
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) | |
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) | |
self.is_causal = False | |
def forward( | |
self, | |
latents: torch.Tensor, | |
context: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
""" | |
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension! | |
Args: | |
latents (`torch.Tensor`): Tensor of shape [bsz, n_latents, embed_dim] representing fixed length latents to compress to. | |
context (`torch.Tensor`): Tensor of shape [bsz, seq, embed_dim] representing long-form context to resample. | |
attention_mask (`torch.Tensor`, *optional*): Tensor of shape [bsz, 1, seq, n_latents] representing attention mask. | |
position_ids (`torch.LongTensor`, *optional*): Tensor of shape [bsz, seq] representing position indices of each input token. | |
past_key_value (`Tuple[torch.Tensor]`, *optional*): Tuple of tensors containing cached key and value states. | |
output_attentions (`bool`, *optional*, defaults to `False`): Whether to return attention weights. | |
use_cache (`bool`, *optional*, defaults to `False`): Whether to use past_key_value for caching. | |
""" | |
bsz, q_len, _ = latents.size() | |
kv_seq_len = q_len + context.size()[1] | |
hidden_states = torch.concat([context, latents], dim=-2) | |
query_states = self.q_proj(latents) | |
key_states = self.k_proj(hidden_states) | |
value_states = self.v_proj(hidden_states) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
past_key_value = getattr(self, "past_key_value", past_key_value) | |
if past_key_value is not None: | |
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx) | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | |
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | |
f" {attn_weights.size()}" | |
) | |
if attention_mask is not None: | |
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | |
) | |
attn_weights = attn_weights + attention_mask | |
# upcast attention to fp32 | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) | |
attn_output = torch.matmul(attn_weights, value_states) | |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | |
f" {attn_output.size()}" | |
) | |
attn_output = attn_output.transpose(1, 2).contiguous() | |
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim) | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
# Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with MistralAttention->Idefics2PerceiverAttention,MistralFlashAttention->Idefics2PerceiverFlashAttention,Mistral->Idefics2 | |
class Idefics2PerceiverFlashAttention2(Idefics2PerceiverAttention): | |
""" | |
Idefics2 flash attention module. This module inherits from `Idefics2PerceiverAttention` as the weights of the module stays | |
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | |
flash attention and deal with padding tokens in case the input contains any of them. | |
""" | |
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. | |
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. | |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). | |
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | |
# Ignore copy | |
def forward( | |
self, | |
latents: torch.Tensor, | |
context: torch.Tensor, | |
attention_mask: Optional[torch.LongTensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Cache] = None, | |
output_attentions: bool = False, | |
use_cache: bool = False, | |
**kwargs, | |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | |
bsz, q_len, _ = latents.size() | |
kv_seq_len = q_len + context.size()[1] | |
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn! | |
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents` | |
query_states = self.q_proj(latents) | |
key_states = self.k_proj(torch.cat([context, latents], dim=-2)) | |
value_states = self.v_proj(torch.cat([context, latents], dim=-2)) | |
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) | |
key_states = key_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
value_states = value_states.view(bsz, kv_seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) | |
kv_seq_len = key_states.shape[-2] | |
if past_key_value is not None: | |
kv_seq_len += past_key_value[0].shape[-2] | |
if past_key_value is not None: | |
# Activate slicing cache only if the config has a value `sliding_windows` attribute | |
if hasattr(self.config, "sliding_window") and kv_seq_len > self.config.sliding_window: | |
slicing_tokens = kv_seq_len - self.config.sliding_window | |
past_key = past_key_value[0] | |
past_value = past_key_value[1] | |
past_key = past_key[:, :, slicing_tokens:, :].contiguous() | |
past_value = past_value[:, :, slicing_tokens:, :].contiguous() | |
if past_key.shape[-2] != self.config.sliding_window - 1: | |
raise ValueError( | |
"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1," | |
f" head_dim`), got {past_key.shape}" | |
) | |
past_key_value = (past_key, past_value) | |
if attention_mask is not None: | |
attention_mask = attention_mask[:, slicing_tokens:] | |
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) | |
key_states = torch.cat([past_key_value[0], key_states], dim=2) | |
value_states = torch.cat([past_key_value[1], value_states], dim=2) | |
past_key_value = (key_states, value_states) if use_cache else None | |
# repeat k/v heads if n_kv_heads < n_heads | |
key_states = repeat_kv(key_states, self.num_key_value_groups) | |
value_states = repeat_kv(value_states, self.num_key_value_groups) | |
dropout_rate = 0.0 if not self.training else self.attention_dropout | |
# In PEFT, usually we cast the layer norms in float32 for training stability reasons | |
# therefore the input hidden states gets silently casted in float32. Hence, we need | |
# cast them back in float16 just to be sure everything works as expected. | |
input_dtype = query_states.dtype | |
if input_dtype == torch.float32: | |
if torch.is_autocast_enabled(): | |
target_dtype = torch.get_autocast_gpu_dtype() | |
# Handle the case where the model is quantized | |
elif hasattr(self.config, "_pre_quantization_dtype"): | |
target_dtype = self.config._pre_quantization_dtype | |
else: | |
target_dtype = self.q_proj.weight.dtype | |
logger.warning_once( | |
f"The input hidden states seems to be silently casted in float32, this might be related to" | |
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | |
f" {target_dtype}." | |
) | |
query_states = query_states.to(target_dtype) | |
key_states = key_states.to(target_dtype) | |
value_states = value_states.to(target_dtype) | |
# Reashape to the expected shape for Flash Attention | |
query_states = query_states.transpose(1, 2) | |
key_states = key_states.transpose(1, 2) | |
value_states = value_states.transpose(1, 2) | |
attn_output = self._flash_attention_forward( | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
q_len, | |
dropout=dropout_rate, | |
use_sliding_windows=False, | |
) | |
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous() | |
attn_output = self.o_proj(attn_output) | |
if not output_attentions: | |
attn_weights = None | |
return attn_output, attn_weights, past_key_value | |
def _flash_attention_forward( | |
self, | |
query_states, | |
key_states, | |
value_states, | |
attention_mask, | |
query_length, | |
dropout=0.0, | |
softmax_scale=None, | |
use_sliding_windows=False, | |
): | |
""" | |
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | |
first unpad the input, then computes the attention scores and pad the final attention scores. | |
Args: | |
query_states (`torch.Tensor`): | |
Input query states to be passed to Flash Attention API | |
key_states (`torch.Tensor`): | |
Input key states to be passed to Flash Attention API | |
value_states (`torch.Tensor`): | |
Input value states to be passed to Flash Attention API | |
attention_mask (`torch.Tensor`): | |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | |
position of padding tokens and 1 for the position of non-padding tokens. | |
dropout (`float`): | |
Attention dropout | |
softmax_scale (`float`, *optional*): | |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | |
use_sliding_windows (`bool`, *optional*): | |
Whether to activate sliding window attention. | |
""" | |
if not self._flash_attn_uses_top_left_mask: | |
causal = self.is_causal | |
else: | |
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. | |
causal = self.is_causal and query_length != 1 | |
# Contains at least one padding token in the sequence | |
if attention_mask is not None: | |
batch_size = query_states.shape[0] | |
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( | |
query_states, key_states, value_states, attention_mask, query_length | |
) | |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens | |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | |
if not use_sliding_windows: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output_unpad = flash_attn_varlen_func( | |
query_states, | |
key_states, | |
value_states, | |
cu_seqlens_q=cu_seqlens_q, | |
cu_seqlens_k=cu_seqlens_k, | |
max_seqlen_q=max_seqlen_in_batch_q, | |
max_seqlen_k=max_seqlen_in_batch_k, | |
dropout_p=dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, self.config.sliding_window), | |
) | |
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) | |
else: | |
if not use_sliding_windows: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
) | |
else: | |
attn_output = flash_attn_func( | |
query_states, | |
key_states, | |
value_states, | |
dropout, | |
softmax_scale=softmax_scale, | |
causal=causal, | |
window_size=(self.config.sliding_window, self.config.sliding_window), | |
) | |
return attn_output | |
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): | |
batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape | |
# On the first iteration we need to properly re-create the padding mask | |
# by slicing it on the proper place | |
if kv_seq_len != attention_mask.shape[-1]: | |
attention_mask_num_tokens = attention_mask.shape[-1] | |
attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] | |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | |
key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) | |
if query_length == kv_seq_len: | |
query_layer = index_first_axis( | |
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k | |
) | |
cu_seqlens_q = cu_seqlens_k | |
max_seqlen_in_batch_q = max_seqlen_in_batch_k | |
indices_q = indices_k | |
elif query_length == 1: | |
max_seqlen_in_batch_q = 1 | |
cu_seqlens_q = torch.arange( | |
batch_size + 1, dtype=torch.int32, device=query_layer.device | |
) # There is a memcpy here, that is very bad. | |
indices_q = cu_seqlens_q[:-1] | |
query_layer = query_layer.squeeze(1) | |
else: | |
# The -q_len: slice assumes left padding. | |
attention_mask = attention_mask[:, -query_length:] | |
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) | |
return ( | |
query_layer, | |
key_layer, | |
value_layer, | |
indices_q, | |
(cu_seqlens_q, cu_seqlens_k), | |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), | |
) | |
IDEFICS2_PERCEIVER_ATTENTION_CLASSES = { | |
"eager": Idefics2PerceiverAttention, | |
"flash_attention_2": Idefics2PerceiverFlashAttention2, | |
} | |
class Idefics2PerceiverLayer(nn.Module): | |
def __init__(self, config, layer_idx: int): | |
super().__init__() | |
self.hidden_size = config.text_config.hidden_size | |
self.n_latents = config.perceiver_config.resampler_n_latents | |
self.depth = config.perceiver_config.resampler_depth | |
self.rms_norm_eps = config.text_config.rms_norm_eps | |
self.input_latents_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) | |
self.input_context_norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) | |
self.self_attn = IDEFICS2_PERCEIVER_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) | |
self.post_attention_layernorm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) | |
self.mlp = Idefics2MLP( | |
hidden_size=config.text_config.hidden_size, | |
intermediate_size=config.text_config.hidden_size * 4, | |
output_size=config.text_config.hidden_size, | |
hidden_act=config.perceiver_config.hidden_act, | |
) | |
def forward( | |
self, | |
latents: torch.Tensor, | |
context: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_value: Optional[Tuple[torch.Tensor]] = None, | |
output_attentions: Optional[bool] = False, | |
use_cache: Optional[bool] = False, | |
**kwargs, | |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: | |
""" | |
Args: | |
latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | |
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | |
`(batch, sequence_length)` where padding elements are indicated by 0. | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under | |
returned tensors for more detail. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | |
(see `past_key_values`). | |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | |
""" | |
residual = latents | |
latents = self.input_latents_norm(latents) | |
context = self.input_context_norm(context) | |
latents, self_attn_weights, present_key_value = self.self_attn( | |
latents=latents, | |
context=context, | |
attention_mask=attention_mask, | |
) | |
latents = residual + latents | |
residual = latents | |
latents = self.post_attention_layernorm(latents) | |
latents = self.mlp(latents) | |
latents = residual + latents | |
outputs = (latents,) | |
if output_attentions: | |
outputs += (self_attn_weights,) | |
if use_cache: | |
outputs += (present_key_value,) | |
return outputs | |
class Idefics2PerceiverResampler(nn.Module): | |
def __init__(self, config) -> None: | |
""" | |
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or | |
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then | |
returns a Tensor of shape [bsz, n_latents, embed_dim]. The Resampler acts as a form of learned pooling and | |
is derived from [Perceiver: General Perception with Iterative Attention](https://arxiv.org/abs/2103.03206). | |
""" | |
super().__init__() | |
self.hidden_size = config.text_config.hidden_size | |
self.hidden_act = config.perceiver_config.hidden_act | |
self.n_latents = config.perceiver_config.resampler_n_latents | |
self.depth = config.perceiver_config.resampler_depth | |
self.rms_norm_eps = config.text_config.rms_norm_eps | |
# Create Latents for Perceiver | |
self.latents = nn.Parameter(torch.ones(self.n_latents, self.hidden_size)) | |
# Create Transformer Blocks | |
self.layers = nn.ModuleList([Idefics2PerceiverLayer(config, idx) for idx in range(self.depth)]) | |
self.norm = Idefics2RMSNorm(self.hidden_size, eps=self.rms_norm_eps) | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
def forward( | |
self, | |
context: torch.Tensor, | |
attention_mask, | |
) -> torch.Tensor: | |
# seq embed -> bsz seq embed | |
latents = self.latents.unsqueeze(0).expand((context.shape[0], *self.latents.size())) | |
latent_attention_mask = torch.ones( | |
(attention_mask.size(0), latents.size(1)), dtype=attention_mask.dtype, device=attention_mask.device | |
) | |
attention_mask = torch.cat([attention_mask, latent_attention_mask], dim=-1) | |
attention_mask = ( | |
_prepare_4d_attention_mask(attention_mask, latents.dtype, tgt_len=self.n_latents) | |
if not self._use_flash_attention_2 | |
else attention_mask | |
) | |
compressed_context = latents | |
for perceiver_layer in self.layers: | |
layer_outputs = perceiver_layer( | |
compressed_context, | |
context, | |
attention_mask=attention_mask, | |
position_ids=None, | |
past_key_value=None, | |
output_attentions=False, | |
use_cache=False, | |
) | |
compressed_context = layer_outputs[0] | |
compressed_context = self.norm(compressed_context) | |
return compressed_context | |
class Idefics2Connector(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.modality_projection = Idefics2MLP( | |
hidden_size=config.vision_config.hidden_size, | |
intermediate_size=config.text_config.intermediate_size, | |
output_size=config.text_config.hidden_size, | |
hidden_act=config.text_config.hidden_act, | |
) | |
self.perceiver_resampler = Idefics2PerceiverResampler(config) | |
def forward(self, image_hidden_states, attention_mask): | |
image_hidden_states = self.modality_projection(image_hidden_states) | |
image_hidden_states = self.perceiver_resampler(context=image_hidden_states, attention_mask=attention_mask) | |
return image_hidden_states | |
IDEFICS2_START_DOCSTRING = r""" | |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | |
etc.) | |
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
and behavior. | |
Parameters: | |
config ([`Idefics2Config`] or [`Idefics2VisionConfig`]): | |
Model configuration class with all the parameters of the model. Initializing with a config file does not | |
load the weights associated with the model, only the configuration. Check out the | |
[`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
""" | |
class Idefics2PreTrainedModel(PreTrainedModel): | |
config_class = Idefics2Config | |
base_model_prefix = "model" | |
supports_gradient_checkpointing = True | |
_no_split_modules = ["Idefics2VisionAttention", "Idefics2MLP", "Idefics2PerceiverLayer", "Idefics2DecoderLayer"] | |
_skip_keys_device_placement = "past_key_values" | |
_supports_flash_attn_2 = True | |
def _init_weights(self, module): | |
# important: this ported version of Idefics2 isn't meant for training from scratch - only | |
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase | |
# https://github.com/haotian-liu/LLaVA/tree/main/idefics2 should serve for that purpose | |
std = ( | |
self.config.text_config.initializer_range | |
if hasattr(self.config, "initializer_range") | |
else self.config.text_config.initializer_range | |
) | |
if hasattr(module, "class_embedding"): | |
module.class_embedding.data.normal_(mean=0.0, std=std) | |
if isinstance(module, (nn.Linear, nn.Conv2d)): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=std) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def _autoset_attn_implementation( | |
cls, | |
config, | |
use_flash_attention_2: bool = False, | |
torch_dtype: Optional[torch.dtype] = None, | |
device_map: Optional[Union[str, Dict[str, int]]] = None, | |
check_device_map: bool = True, | |
**kwargs, | |
): | |
""" | |
Overrides the method in `PreTrainedModel` to update the vision config with the correct attention implementation | |
""" | |
config = super()._autoset_attn_implementation( | |
config=config, | |
use_flash_attention_2=use_flash_attention_2, | |
torch_dtype=torch_dtype, | |
device_map=device_map, | |
check_device_map=check_device_map, | |
**kwargs, | |
) | |
config.vision_config._attn_implementation = config._attn_implementation | |
return config | |
IDEFICS2_INPUTS_DOCSTRING = r""" | |
Args: | |
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | |
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | |
it. | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
[What are input IDs?](../glossary#input-ids) | |
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
- 1 for tokens that are **not masked**, | |
- 0 for tokens that are **masked**. | |
[What are attention masks?](../glossary#attention-mask) | |
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
[`PreTrainedTokenizer.__call__`] for details. | |
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see | |
`past_key_values`). | |
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | |
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | |
information on the default strategy. | |
- 1 indicates the head is **not masked**, | |
- 0 indicates the head is **masked**. | |
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | |
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | |
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): | |
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape | |
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape | |
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. | |
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | |
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. | |
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that | |
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all | |
`decoder_input_ids` of shape `(batch_size, sequence_length)`. | |
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
model's internal embedding lookup matrix. | |
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): | |
The tensors corresponding to the input images. Pixel values can be obtained using | |
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses | |
[`CLIPImageProcessor`] for processing images). | |
pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): | |
Mask to avoid performing attention on padding pixel indices. | |
image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): | |
The hidden states of the image encoder after modality projection and perceiver resampling. | |
use_cache (`bool`, *optional*): | |
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
`past_key_values`). | |
output_attentions (`bool`, *optional*): | |
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
tensors for more detail. | |
output_hidden_states (`bool`, *optional*): | |
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
more detail. | |
return_dict (`bool`, *optional*): | |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | |
""" | |
class Idefics2Model(Idefics2PreTrainedModel): | |
def __init__(self, config: Idefics2Config): | |
super().__init__(config) | |
self.padding_idx = self.config.text_config.pad_token_id | |
self.vocab_size = self.config.text_config.vocab_size | |
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | |
config.vision_config._attn_implementation = config._attn_implementation | |
self.vision_model = Idefics2VisionTransformer(config.vision_config) | |
self.connector = Idefics2Connector(config) | |
self.text_model = AutoModel.from_config(config.text_config, attn_implementation=config._attn_implementation) # Dongfu: add attn_implementation for text_model | |
self.image_seq_len = config.perceiver_config.resampler_n_latents | |
self.image_token_id = self.config.image_token_id | |
self.post_init() | |
def enable_input_require_grads(self): | |
""" | |
Enables the gradients for the input embeddings. | |
This is useful for lora when using gradient checkpointing. | |
c.f. https://github.com/huggingface/peft/issues/1402#issuecomment-1913675032 | |
Override to set output.requires_grad = True for both the decoder's and vision model's embeddings. | |
""" | |
def get_lowest_module(module): | |
if len(list(module.children())) == 0: | |
# If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.) | |
return module | |
else: | |
# Recursively call the function on each child module | |
return get_lowest_module(list(module.children())[0]) | |
def make_inputs_require_grads(module, input, output): | |
output.requires_grad_(True) | |
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) | |
self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook( | |
make_inputs_require_grads | |
) | |
def get_input_embeddings(self): | |
return self.text_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.text_model.set_input_embeddings(value) | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | |
model_embeds = self.text_model.resize_token_embeddings( | |
new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of | |
) | |
self.config.text_config.vocab_size = model_embeds.num_embeddings | |
return model_embeds | |
def inputs_merger( | |
self, | |
input_ids: torch.LongTensor, | |
inputs_embeds: Optional[torch.Tensor], | |
image_hidden_states: Optional[torch.Tensor], | |
): | |
""" | |
This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM. | |
The merging happens as follows: | |
- The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`. | |
- We get the image hidden states for the image through the vision encoder (and potentially the perceiver), and that hidden state is then projected into the text embedding space. | |
We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer. | |
- The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM. | |
- To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states. | |
""" | |
num_images, _, vision_hidden_size = image_hidden_states.shape | |
special_image_token_mask = input_ids == self.image_token_id | |
new_inputs_embeds = inputs_embeds.clone() | |
reshaped_image_hidden_states = image_hidden_states.view(-1, vision_hidden_size) | |
new_inputs_embeds[special_image_token_mask] = reshaped_image_hidden_states | |
return new_inputs_embeds | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
pixel_attention_mask: Optional[torch.BoolTensor] = None, | |
image_hidden_states: Optional[torch.FloatTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Idefics2BaseModelOutputWithPast]: | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if self.training and self.text_model.gradient_checkpointing and use_cache: | |
logger.warning_once( | |
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
) | |
use_cache = False | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None: | |
batch_size, seq_length = input_ids.shape | |
elif inputs_embeds is not None: | |
batch_size, seq_length, _ = inputs_embeds.shape | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
past_seen_tokens = 0 | |
if use_cache: | |
if not isinstance(past_key_values, Cache): | |
past_key_values = DynamicCache.from_legacy_cache(past_key_values) | |
past_seen_tokens = past_key_values.get_usable_length(seq_length) | |
if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0: | |
raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.") | |
if inputs_embeds is None: | |
inputs_embeds = self.text_model.get_input_embeddings()(input_ids) | |
# START VISUAL INPUTS INTEGRATION | |
if pixel_values is not None and image_hidden_states is not None: | |
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time") | |
elif pixel_values is not None: | |
batch_size, num_images, num_channels, height, width = pixel_values.shape | |
pixel_values = pixel_values.to(dtype=self.dtype) # fp16 compatibility | |
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:]) | |
# Remove padding images - padding images are full 0. | |
nb_values_per_image = pixel_values.shape[1:].numel() | |
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image | |
pixel_values = pixel_values[real_images_inds].contiguous() | |
# Handle the vision attention mask | |
if pixel_attention_mask is None: | |
pixel_attention_mask = torch.ones( | |
size=(pixel_values.size(0), pixel_values.size(2), pixel_values.size(3)), | |
dtype=torch.bool, | |
device=pixel_values.device, | |
) | |
else: | |
# Remove padding images from the mask/pP p | |
pixel_attention_mask = pixel_attention_mask.view( | |
batch_size * num_images, *pixel_attention_mask.shape[2:] | |
) | |
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous() | |
patch_size = self.config.vision_config.patch_size | |
patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size) | |
patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size) | |
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() | |
# Get sequence from the vision encoder | |
pixel_batch_size = 4 | |
all_image_hidden_states = [] | |
for i in range(0, pixel_values.size(0), pixel_batch_size): | |
batch_pixel_values = pixel_values[i : i + pixel_batch_size] | |
batch_patch_attention_mask = patch_attention_mask[i : i + pixel_batch_size] | |
batch_image_hidden_states = self.vision_model( | |
pixel_values=batch_pixel_values, | |
patch_attention_mask=batch_patch_attention_mask, | |
).last_hidden_state | |
batch_image_hidden_states = self.connector( | |
batch_image_hidden_states, attention_mask=batch_patch_attention_mask.view(batch_pixel_values.size(0), -1) | |
) | |
all_image_hidden_states.append(batch_image_hidden_states) | |
image_hidden_states = torch.cat(all_image_hidden_states, dim=0) | |
# image_hidden_states = self.vision_model( | |
# pixel_values=pixel_values, | |
# patch_attention_mask=patch_attention_mask, | |
# ).last_hidden_state | |
# # Modality projection & resampling | |
# image_hidden_states = self.connector( | |
# image_hidden_states, attention_mask=patch_attention_mask.view(pixel_values.size(0), -1) | |
# ) | |
elif image_hidden_states is not None: | |
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device) | |
if past_seen_tokens == 0 and inputs_embeds is not None and image_hidden_states is not None: | |
# When we generate, we don't want to replace the potential image_token_id that we generated by images | |
# that simply don't exist | |
inputs_embeds = self.inputs_merger( | |
input_ids=input_ids, | |
inputs_embeds=inputs_embeds, | |
image_hidden_states=image_hidden_states, | |
) | |
outputs = self.text_model( | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return tuple(v for v in [*outputs, image_hidden_states] if v is not None) | |
return Idefics2BaseModelOutputWithPast( | |
last_hidden_state=outputs.last_hidden_state, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
image_hidden_states=image_hidden_states, | |
) | |
class Idefics2ForConditionalGeneration(Idefics2PreTrainedModel): | |
_tied_weights_keys = ["lm_head.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.model = Idefics2Model(config) | |
self.image_token_id = self.config.image_token_id | |
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) | |
self.vocab_size = config.text_config.vocab_size | |
# Initialize weights and apply final processing | |
self.post_init() | |
def enable_input_require_grads(self): | |
""" | |
Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping | |
the model weights fixed. | |
""" | |
def make_inputs_require_grads(module, input, output): | |
output.requires_grad_(True) | |
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) | |
self._vision_require_grads_hook = self.model.vision_model.get_input_embeddings().register_forward_hook( | |
make_inputs_require_grads | |
) | |
def get_input_embeddings(self): | |
return self.model.text_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.model.text_model.set_input_embeddings(value) | |
def get_output_embeddings(self): | |
return self.lm_head | |
def set_output_embeddings(self, new_embeddings): | |
self.lm_head = new_embeddings | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | |
# model_embeds = self.model.resize_token_embeddings(new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of) | |
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
if new_num_tokens is None and pad_to_multiple_of is None: | |
return model_embeds | |
# Update base model and current model config | |
# Ignore copy | |
self.config.text_config.vocab_size = model_embeds.weight.shape[0] | |
self.vocab_size = self.config.text_config.vocab_size | |
# Tie weights again if needed | |
self.tie_weights() | |
return model_embeds | |
def tie_weights(self): | |
""" | |
Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. | |
""" | |
output_embeddings = self.get_output_embeddings() | |
input_embeddings = self.get_input_embeddings() | |
if getattr(self.config, "tie_word_embeddings", True): | |
output_embeddings.weight = input_embeddings.weight | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
pixel_attention_mask: Optional[torch.BoolTensor] = None, | |
image_hidden_states: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Idefics2CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> import requests | |
>>> import torch | |
>>> from PIL import Image | |
>>> from io import BytesIO | |
>>> from transformers import AutoProcessor, AutoModelForVision2Seq | |
>>> from transformers.image_utils import load_image | |
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible | |
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") | |
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg") | |
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg") | |
>>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-base") | |
>>> model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b-base", device_map="auto") | |
>>> BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids | |
>>> EOS_WORDS_IDS = [processor.tokenizer.eos_token_id] | |
>>> # Create inputs | |
>>> prompts = [ | |
... "<image>In this image, we can see the city of New York, and more specifically the Statue of Liberty.<image>In this image,", | |
... "In which city is that bridge located?<image>", | |
... ] | |
>>> images = [[image1, image2], [image3]] | |
>>> inputs = processor(text=prompts, padding=True, return_tensors="pt").to("cuda") | |
>>> # Generate | |
>>> generated_ids = model.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=20) | |
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
>>> print(generated_texts) | |
['In this image, we can see the city of New York, and more specifically the Statue of Liberty. In this image, we can see the city of New York, and more specifically the Statue of Liberty.\n\n', 'In which city is that bridge located?\n\nThe bridge is located in the city of Pittsburgh, Pennsylvania.\n\n\nThe bridge is'] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
pixel_values=pixel_values, | |
pixel_attention_mask=pixel_attention_mask, | |
image_hidden_states=image_hidden_states, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
logits = logits.float() | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
# Shift so that tokens < n predict n | |
if attention_mask is not None: | |
shift_attention_mask = attention_mask[..., 1:].to(logits.device) | |
shift_logits = logits[..., :-1, :][shift_attention_mask != 0].contiguous() | |
shift_labels = labels[..., 1:][shift_attention_mask != 0].contiguous() | |
else: | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=self.image_token_id) | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
return Idefics2CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
image_hidden_states=outputs.image_hidden_states, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
): | |
# Omit tokens covered by past_key_values | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
max_cache_length = past_key_values.get_max_length() | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
max_cache_length = None | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
if ( | |
max_cache_length is not None | |
and attention_mask is not None | |
and cache_length + input_ids.shape[1] > max_cache_length | |
): | |
attention_mask = attention_mask[:, -max_cache_length:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
image_hidden_states = kwargs.get("image_hidden_states", None) | |
if image_hidden_states is not None: | |
pixel_values = None | |
pixel_attention_mask = None | |
else: | |
pixel_values = kwargs.get("pixel_values", None) | |
pixel_attention_mask = kwargs.get("pixel_attention_mask", None) | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"pixel_attention_mask": pixel_attention_mask, | |
"image_hidden_states": image_hidden_states, | |
} | |
) | |
return model_inputs | |
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs): | |
model_kwargs = super()._update_model_kwargs_for_generation( | |
outputs=outputs, | |
model_kwargs=model_kwargs, | |
is_encoder_decoder=is_encoder_decoder, | |
**kwargs, | |
) | |
# Get the precomputed image_hidden_states | |
model_kwargs["image_hidden_states"] = outputs.image_hidden_states | |
return model_kwargs | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past | |
class Idefics2ForSequenceClassification(Idefics2PreTrainedModel): | |
_tied_weights_keys = ["score.weight"] | |
def __init__(self, config): | |
super().__init__(config) | |
self.num_labels = config.num_labels | |
self.model = Idefics2Model(config) | |
self.image_token_id = self.config.image_token_id | |
self.score = nn.Linear(config.text_config.hidden_size, self.num_labels) | |
self.vocab_size = config.text_config.vocab_size | |
# Initialize weights and apply final processing | |
self.post_init() | |
def enable_input_require_grads(self): | |
""" | |
Enables the gradients for the input embeddings. This is useful for fine-tuning adapter weights while keeping | |
the model weights fixed. | |
""" | |
def make_inputs_require_grads(module, input, output): | |
output.requires_grad_(True) | |
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads) | |
self._vision_require_grads_hook = self.model.vision_model.get_input_embeddings().register_forward_hook( | |
make_inputs_require_grads | |
) | |
def get_input_embeddings(self): | |
return self.model.text_model.get_input_embeddings() | |
def set_input_embeddings(self, value): | |
self.model.text_model.set_input_embeddings(value) | |
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: | |
# model_embeds = self.model.resize_token_embeddings(new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of) | |
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of) | |
if new_num_tokens is None and pad_to_multiple_of is None: | |
return model_embeds | |
# Update base model and current model config | |
# Ignore copy | |
self.config.text_config.vocab_size = model_embeds.weight.shape[0] | |
self.vocab_size = self.config.text_config.vocab_size | |
# Tie weights again if needed | |
self.tie_weights() | |
return model_embeds | |
def tie_weights(self): | |
""" | |
Overwrite `transformers.modeling_utils.PreTrainedModel.tie_weights` to handle the case of DecoupledLinear and DecoupledEmbedding. | |
""" | |
output_embeddings = self.get_output_embeddings() | |
input_embeddings = self.get_input_embeddings() | |
if getattr(self.config, "tie_word_embeddings", True): | |
output_embeddings.weight = input_embeddings.weight | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
pixel_values: Optional[torch.FloatTensor] = None, | |
pixel_attention_mask: Optional[torch.BoolTensor] = None, | |
image_hidden_states: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
) -> Union[Tuple, Idefics2CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> import requests | |
>>> import torch | |
>>> from PIL import Image | |
>>> from io import BytesIO | |
>>> from transformers import AutoProcessor, AutoModelForVision2Seq | |
>>> from transformers.image_utils import load_image | |
>>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible | |
>>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") | |
>>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg") | |
>>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg") | |
>>> processor = AutoProcessor.from_pretrained("HuggingFaceM4/idefics2-8b-base") | |
>>> model = AutoModelForVision2Seq.from_pretrained("HuggingFaceM4/idefics2-8b-base", device_map="auto") | |
>>> BAD_WORDS_IDS = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids | |
>>> EOS_WORDS_IDS = [processor.tokenizer.eos_token_id] | |
>>> # Create inputs | |
>>> prompts = [ | |
... "<image>In this image, we can see the city of New York, and more specifically the Statue of Liberty.<image>In this image,", | |
... "In which city is that bridge located?<image>", | |
... ] | |
>>> images = [[image1, image2], [image3]] | |
>>> inputs = processor(text=prompts, padding=True, return_tensors="pt").to("cuda") | |
>>> # Generate | |
>>> generated_ids = model.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_new_tokens=20) | |
>>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) | |
>>> print(generated_texts) | |
['In this image, we can see the city of New York, and more specifically the Statue of Liberty. In this image, we can see the city of New York, and more specifically the Statue of Liberty.\n\n', 'In which city is that bridge located?\n\nThe bridge is located in the city of Pittsburgh, Pennsylvania.\n\n\nThe bridge is'] | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
pixel_values=pixel_values, | |
pixel_attention_mask=pixel_attention_mask, | |
image_hidden_states=image_hidden_states, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = outputs[0] | |
logits = self.score(hidden_states) | |
if input_ids is not None: | |
batch_size = input_ids.shape[0] | |
else: | |
batch_size = inputs_embeds.shape[0] | |
if self.config.pad_token_id is None and batch_size != 1: | |
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
if self.config.pad_token_id is None: | |
sequence_lengths = -1 | |
else: | |
if input_ids is not None: | |
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility | |
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | |
sequence_lengths = sequence_lengths % input_ids.shape[-1] | |
sequence_lengths = sequence_lengths.to(logits.device) | |
else: | |
sequence_lengths = -1 | |
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
loss = None | |
if labels is not None: | |
labels = labels.to(logits.device) | |
if self.config.problem_type is None: | |
if self.num_labels == 1: | |
self.config.problem_type = "regression" | |
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
self.config.problem_type = "single_label_classification" | |
else: | |
self.config.problem_type = "multi_label_classification" | |
if self.config.problem_type == "regression": | |
loss_fct = MSELoss() | |
if self.num_labels == 1: | |
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
else: | |
loss = loss_fct(pooled_logits, labels) | |
elif self.config.problem_type == "single_label_classification": | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) | |
elif self.config.problem_type == "multi_label_classification": | |
loss_fct = BCEWithLogitsLoss() | |
loss = loss_fct(pooled_logits, labels) | |
if not return_dict: | |
output = (pooled_logits,) + outputs[1:] | |
return ((loss,) + output) if loss is not None else output | |
return SequenceClassifierOutputWithPast( | |
loss=loss, | |
logits=pooled_logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
def prepare_inputs_for_generation( | |
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs | |
): | |
# Omit tokens covered by past_key_values | |
if past_key_values is not None: | |
if isinstance(past_key_values, Cache): | |
cache_length = past_key_values.get_seq_length() | |
past_length = past_key_values.seen_tokens | |
max_cache_length = past_key_values.get_max_length() | |
else: | |
cache_length = past_length = past_key_values[0][0].shape[2] | |
max_cache_length = None | |
# Keep only the unprocessed tokens: | |
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where | |
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as | |
# input) | |
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: | |
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | |
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard | |
# input_ids based on the past_length. | |
elif past_length < input_ids.shape[1]: | |
input_ids = input_ids[:, past_length:] | |
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. | |
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask. | |
if ( | |
max_cache_length is not None | |
and attention_mask is not None | |
and cache_length + input_ids.shape[1] > max_cache_length | |
): | |
attention_mask = attention_mask[:, -max_cache_length:] | |
position_ids = kwargs.get("position_ids", None) | |
if attention_mask is not None and position_ids is None: | |
# create position_ids on the fly for batch generation | |
position_ids = attention_mask.long().cumsum(-1) - 1 | |
position_ids.masked_fill_(attention_mask == 0, 1) | |
if past_key_values: | |
position_ids = position_ids[:, -input_ids.shape[1] :] | |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
if inputs_embeds is not None and past_key_values is None: | |
model_inputs = {"inputs_embeds": inputs_embeds} | |
else: | |
model_inputs = {"input_ids": input_ids} | |
image_hidden_states = kwargs.get("image_hidden_states", None) | |
if image_hidden_states is not None: | |
pixel_values = None | |
pixel_attention_mask = None | |
else: | |
pixel_values = kwargs.get("pixel_values", None) | |
pixel_attention_mask = kwargs.get("pixel_attention_mask", None) | |
model_inputs.update( | |
{ | |
"position_ids": position_ids, | |
"past_key_values": past_key_values, | |
"use_cache": kwargs.get("use_cache"), | |
"attention_mask": attention_mask, | |
"pixel_values": pixel_values, | |
"pixel_attention_mask": pixel_attention_mask, | |
"image_hidden_states": image_hidden_states, | |
} | |
) | |
return model_inputs | |
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs): | |
model_kwargs = super()._update_model_kwargs_for_generation( | |
outputs=outputs, | |
model_kwargs=model_kwargs, | |
is_encoder_decoder=is_encoder_decoder, | |
**kwargs, | |
) | |
# Get the precomputed image_hidden_states | |
model_kwargs["image_hidden_states"] = outputs.image_hidden_states | |
return model_kwargs | |
# Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache | |
def _reorder_cache(past_key_values, beam_idx): | |
reordered_past = () | |
for layer_past in past_key_values: | |
reordered_past += ( | |
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), | |
) | |
return reordered_past |