Spaces:
Sleeping
Sleeping
File size: 12,724 Bytes
dc0d378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import torch
import tiktoken
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
@dataclass
class GPTConfig:
block_size: int = 1024 # this is max sequence len
vocab_size: int = 50304 # 50257 # total vocab including 256 bytes + 1 special token (<|endoftext|>) and 1000-257 BPE merges
n_layer: int = 12 # number of layers
n_head: int = 12 # total number of attention heads
n_embd: int = 768 # embedding dimension
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
n_head = config.n_head
n_embd = config.n_embd
assert n_embd % n_head == 0
# query, key, value prjections all combined
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
# output projection, after `v` is already multiplied with attention_scores
self.c_proj = nn.Linear(n_embd, n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
block_size = config.block_size
self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
self.n_embd = n_embd
self.n_head = n_head
def forward(self, x):
B, T, C = x.size() # batch_size, sequence_len, embedding_dim (n_embd)
# total dim = n_head * head_size
# example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768
qkv = self.c_attn(x) # get combined qkv matix B, T, n_embd * 3(768*3=2304)
q, k, v = qkv.split(self.n_embd, dim=2) # each item gets n_embd size, dimension against two
# b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# final-> bs, n_heads, seq_len, mini-n_head_embd
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
# # print(f"shape of q: {q.shape}... shape of k : {k.shape}")
# attn = (q @ k.transpose(-2, -1))/(math.sqrt(k.shape[-1]))
# # apply masked fill at places where mask ==0, remember tril is lower triangle
# attn = attn.masked_fill(mask = self.bias[ : , : , :T, :T] == 0, value=float('-inf'))
# attn = F.softmax(attn, dim=-1)
# y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size
y = F.scaled_dot_product_attention(q, k, v, is_causal=True) # flash attention
# transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768
y = y.transpose(1, 2).contiguous().view(B, T, C)
# out projection, B, T, C -> B, T, C
y = self.c_proj(y)
return y
def generate(self, prompt):
if not isinstance(prompt, str) or len(prompt) == 0:
return "Say something!"
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU(approximate='tanh')
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
self.c_proj.NANOGPT_SCALE_INIT = 1
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(
dict(
wte=nn.Embedding(config.vocab_size, config.n_embd),
wpe=nn.Embedding(config.block_size, config.n_embd),
h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f=nn.LayerNorm(config.n_embd)
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# weight sharing
self.transformer.wte.weight = self.lm_head.weight
# weight initialization
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2 * self.config.n_layer) ** -0.5
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
B, T = idx.size() # batch , seq_len
# check if incoming seq_len of idx is within limits
assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}"
# forward for token and position encodings
# shape (T)
pos = torch.arange(0, T, dtype=torch.int32, device=idx.device)
pos_emb = self.transformer.wpe(pos) # position embds of shape (T, n_embd)
token_emb = self.transformer.wte(idx) # token embds of shape (Batch, T/seq_len, n_embd)
x = pos_emb + token_emb
# now forward through transformer blocks
for block in self.transformer.h:
x = block(x)
# pass through final layernorm
x = self.transformer.ln_f(x)
# pass through final LM_HEAD
logits = self.lm_head(x) # shape (Batch_size, T, vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require grad)
param_dict = {pn: p for pn, p in self.named_parameters()}
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer
class DataLoaderLite:
def __init__(self, B, T, process_rank, num_processes):
self.B = B
self.T = T
self.process_rank = process_rank
self.num_processes = num_processes
with open('input.txt', 'r') as f:
text = f.read()
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode(text)
self.tokens = torch.tensor(tokens)
print(f'loaded len : {len(self.tokens)}')
# print(f'1 epoch = {len(self.tokens)//(B*T)} batches ')
self.current_position = self.B * self.T * self.process_rank
def next_batch(self):
B, T = self.B, self.T
buf = self.tokens[self.current_position: self.current_position + (B * T) + 1]
y = buf[1:].view(B, T)
x = buf[:-1].view(B, T)
self.current_position += (B * T * self.num_processes)
if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
self.current_position = self.B * self.T * self.process_rank
return x, y
def get_model():
model = GPT(GPTConfig())
return model
# cuda = torch.cuda.is_available()
# torch.set_float32_matmul_precision('high')
# max_lr = 6e-4
# min_lr = 0.1 * max_lr
# warmup_steps = 10
# max_steps = 5000
# def get_lr(iteration):
# if iteration < warmup_steps:
# return max_lr * (iteration + 1) / warmup_steps
# if iteration > max_steps:
# return min_lr
# decay_ratio = (iteration - warmup_steps) / (max_steps - warmup_steps)
# assert 0<= decay_ratio <= 1
# coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
# return min_lr + coeff * (max_lr - min_lr)
# model = GPT(GPTConfig()).to(device=device)
# model = torch.compile(model, mode='default')
# if ddp:
# print("\n\n====================================\nDDP")
# model = DDP(module=model,device_ids=[ddp_local_rank])
# raw_model = model.module if ddp else model
# # optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8)
# optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)
# total_batch_size = 524288
# B = 16
# T = 1024
# assert total_batch_size % (B * T * ddp_world_size) == 0, "just to make sure total batch size is divisible by B*T"
# grad_accumulation_steps = total_batch_size // (B * T * ddp_world_size)
# if master_process:
# print(f"\nGradient accumulation steps needed with B: {B} and T: {T} for total batch size: {total_batch_size} = {grad_accumulation_steps}")
# print(f"total params: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
# train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size)
# # torch.cuda.amp.autocast(enabled=True)
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True
# log_dir = "logs"
# os.makedirs(log_dir, exist_ok=True)
# start= time.time()
# for step in range(max_steps):
# t0 = time.time()
# optimizer.zero_grad()
# loss_mini = 0.0
# for micro_step in range(grad_accumulation_steps):
# x, y = train_loader.next_batch()
# x, y = x.to(device=device), y.to(device)
# with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
# logits, loss = model(x, y)
# # if i == 0:
# # assert logits.dtype == torch.bfloat16
# # assert loss.dtype == torch.float32
# # assert model.transformer.wte.weight.dtype == torch.float32
# loss = loss/grad_accumulation_steps
# loss_mini += loss.detach()
# if ddp:
# model.require_backward_grad_sync = (micro_step == grad_accumulation_steps - 1)
# loss.backward()
# if ddp:
# dist.all_reduce(loss_mini, op=dist.ReduceOp.AVG)
# if master_process and step%50==0 and step > 100:
# print(f"saving at: {step}")
# checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
# checkpoint = {
# 'model': raw_model.state_dict(),
# 'config': raw_model.config,
# 'step': step
# }
# torch.save(checkpoint, checkpoint_path)
# # grad clip
# norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# lr = get_lr(step)
# for param_group in optimizer.param_groups:
# param_group['lr'] = lr
# optimizer.step()
# torch.cuda.synchronize()
# t1 = time.time()
# dt = (t1 - t0)
# tokens_per_sec = (train_loader.B * train_loader.T * grad_accumulation_steps * ddp_world_size) / (dt)
# if master_process:
# # print happens via CPU, hence wait (synchronize GPU)
# print(f'step : {step+1} | loss: {loss_mini.item()} | lr: {lr:.7f} | dt: {dt* 1000:.2f} ms | tokens/sec: {tokens_per_sec:_.6f} | norm: {norm:.2f}')
# end = time.time()
# print("final loss: ", loss*grad_accumulation_steps)
# print(f"total time: {end - start} seconds")
# torch.save(model.state_dict(), "5k-run-new-DDP.pt")
# if ddp:
# destroy_process_group()
|