File size: 12,724 Bytes
dc0d378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch
import tiktoken
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F


@dataclass
class GPTConfig:
    block_size: int = 1024  # this is max sequence len
    vocab_size: int = 50304  # 50257 # total vocab including 256 bytes + 1 special token (<|endoftext|>) and 1000-257 BPE merges
    n_layer: int = 12  # number of layers
    n_head: int = 12  # total number of attention heads
    n_embd: int = 768  # embedding dimension


class CausalSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        n_head = config.n_head
        n_embd = config.n_embd

        assert n_embd % n_head == 0

        # query, key, value prjections all combined
        self.c_attn = nn.Linear(n_embd, 3 * n_embd)

        # output projection, after `v` is already multiplied with attention_scores
        self.c_proj = nn.Linear(n_embd, n_embd)

        self.c_proj.NANOGPT_SCALE_INIT = 1

        block_size = config.block_size

        self.register_buffer('bias', torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))

        self.n_embd = n_embd
        self.n_head = n_head

    def forward(self, x):
        B, T, C = x.size()  # batch_size, sequence_len, embedding_dim (n_embd)
        # total dim = n_head * head_size
        # example GPT2 has 12 heads with each hs = 64 thus C= 12*64 = 768

        qkv = self.c_attn(x)  # get combined qkv matix B, T, n_embd * 3(768*3=2304)

        q, k, v = qkv.split(self.n_embd, dim=2)  # each item gets n_embd size, dimension against two

        # b, seq, n_embd -> b, seq, n_heads, head_size -> b, n_heads, seq_len, head_size
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
        # final-> bs, n_heads, seq_len, mini-n_head_embd

        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)

        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)

        # # print(f"shape of q: {q.shape}... shape of k : {k.shape}")

        # attn = (q @ k.transpose(-2, -1))/(math.sqrt(k.shape[-1]))

        # # apply masked fill at places where mask ==0, remember tril is lower triangle
        # attn = attn.masked_fill(mask = self.bias[ : , : , :T, :T] == 0, value=float('-inf'))

        # attn = F.softmax(attn, dim=-1)

        # y = attn @ v # B, n_heads, T/seq, T @ B, n_heads, T/Seq, head_size) -> B, n_heads, T, head_size

        y = F.scaled_dot_product_attention(q, k, v, is_causal=True)  # flash attention

        # transpose y to merge all n_heads. B, n_heads, T, head_size -> transpose B, T, n_heads, head_size -> view B, T, Channel_size/n_emb 768 
        y = y.transpose(1, 2).contiguous().view(B, T, C)

        # out projection, B, T, C -> B, T, C
        y = self.c_proj(y)

        return y

    def generate(self, prompt):
        if not isinstance(prompt, str) or len(prompt) == 0:
            return "Say something!"


class MLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu = nn.GELU(approximate='tanh')
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
        self.c_proj.NANOGPT_SCALE_INIT = 1

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x


class Block(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class GPT(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = nn.ModuleDict(
            dict(
                wte=nn.Embedding(config.vocab_size, config.n_embd),
                wpe=nn.Embedding(config.block_size, config.n_embd),
                h=nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
                ln_f=nn.LayerNorm(config.n_embd)
            ))

        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # weight sharing
        self.transformer.wte.weight = self.lm_head.weight

        # weight initialization
        self.apply(self._init_weights)

    def _init_weights(self, module):
        if isinstance(module, nn.Linear):
            std = 0.02
            if hasattr(module, 'NANOGPT_SCALE_INIT'):
                std *= (2 * self.config.n_layer) ** -0.5

            torch.nn.init.normal_(module.weight, mean=0.0, std=std)

            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)

        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

    def forward(self, idx, targets=None):
        B, T = idx.size()  # batch , seq_len

        # check if incoming seq_len of idx is within limits
        assert T <= self.config.block_size, f"Cannot proceed as your Sequence len : {T} is more than {self.config.block_size}"

        # forward for token and position encodings
        # shape (T)
        pos = torch.arange(0, T, dtype=torch.int32, device=idx.device)
        pos_emb = self.transformer.wpe(pos)  # position embds of shape (T, n_embd)
        token_emb = self.transformer.wte(idx)  # token embds of shape (Batch, T/seq_len, n_embd)

        x = pos_emb + token_emb

        # now forward through transformer blocks
        for block in self.transformer.h:
            x = block(x)

        # pass through final layernorm
        x = self.transformer.ln_f(x)

        # pass through final LM_HEAD
        logits = self.lm_head(x)  # shape (Batch_size, T, vocab_size)

        loss = None
        if targets is not None:
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))

        return logits, loss

    def configure_optimizers(self, weight_decay, learning_rate, device_type):
        # start with all of the candidate parameters (that require grad)
        param_dict = {pn: p for pn, p in self.named_parameters()}
        param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
        # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
        # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
        decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
        nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
        optim_groups = [
            {'params': decay_params, 'weight_decay': weight_decay},
            {'params': nodecay_params, 'weight_decay': 0.0}
        ]
        num_decay_params = sum(p.numel() for p in decay_params)
        num_nodecay_params = sum(p.numel() for p in nodecay_params)

        print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
        print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
        # Create AdamW optimizer and use the fused version if it is available
        fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
        use_fused = fused_available and device_type == "cuda"

        print(f"using fused AdamW: {use_fused}")
        optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
        return optimizer


class DataLoaderLite:
    def __init__(self, B, T, process_rank, num_processes):
        self.B = B
        self.T = T
        self.process_rank = process_rank
        self.num_processes = num_processes

        with open('input.txt', 'r') as f:
            text = f.read()
        enc = tiktoken.get_encoding('gpt2')
        tokens = enc.encode(text)
        self.tokens = torch.tensor(tokens)
        print(f'loaded len : {len(self.tokens)}')
        # print(f'1 epoch = {len(self.tokens)//(B*T)} batches ')
        self.current_position = self.B * self.T * self.process_rank

    def next_batch(self):
        B, T = self.B, self.T
        buf = self.tokens[self.current_position: self.current_position + (B * T) + 1]
        y = buf[1:].view(B, T)
        x = buf[:-1].view(B, T)

        self.current_position += (B * T * self.num_processes)

        if self.current_position + (B * T * self.num_processes + 1) > len(self.tokens):
            self.current_position = self.B * self.T * self.process_rank
        return x, y


def get_model():
    model = GPT(GPTConfig())
    return model

# cuda = torch.cuda.is_available()
# torch.set_float32_matmul_precision('high')

# max_lr = 6e-4
# min_lr = 0.1 * max_lr
# warmup_steps = 10
# max_steps = 5000

# def get_lr(iteration):
#     if iteration < warmup_steps:
#         return max_lr * (iteration + 1) / warmup_steps
#     if iteration > max_steps:
#         return min_lr

#     decay_ratio = (iteration - warmup_steps) / (max_steps - warmup_steps)

#     assert 0<= decay_ratio <= 1

#     coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
#     return min_lr + coeff * (max_lr - min_lr)


# model = GPT(GPTConfig()).to(device=device)

# model = torch.compile(model, mode='default')

# if ddp:
#     print("\n\n====================================\nDDP")
#     model = DDP(module=model,device_ids=[ddp_local_rank])

# raw_model = model.module if ddp else model

# # optimizer = torch.optim.AdamW(model.parameters(), lr=3e-4, betas=(0.9, 0.95), eps=1e-8)
# optimizer = raw_model.configure_optimizers(weight_decay=0.1, learning_rate=6e-4, device_type=device)


# total_batch_size = 524288

# B = 16
# T = 1024

# assert total_batch_size % (B * T * ddp_world_size) == 0, "just to make sure total batch size is divisible by B*T"

# grad_accumulation_steps = total_batch_size // (B * T * ddp_world_size)

# if master_process:
#     print(f"\nGradient accumulation steps needed with B: {B} and T: {T} for total batch size: {total_batch_size} = {grad_accumulation_steps}")
#     print(f"total params: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")


# train_loader = DataLoaderLite(B=B, T=T, process_rank=ddp_rank, num_processes=ddp_world_size)

# # torch.cuda.amp.autocast(enabled=True)
# torch.backends.cuda.matmul.allow_tf32 = True
# torch.backends.cudnn.allow_tf32 = True

# log_dir = "logs"
# os.makedirs(log_dir, exist_ok=True)

# start= time.time()

# for step in range(max_steps):
#     t0 = time.time()
#     optimizer.zero_grad()

#     loss_mini = 0.0
#     for micro_step in range(grad_accumulation_steps):
#         x, y = train_loader.next_batch()
#         x, y = x.to(device=device), y.to(device)
#         with torch.autocast(device_type='cuda', dtype=torch.bfloat16):
#             logits, loss = model(x, y)
#             # if i == 0:
#             #     assert logits.dtype == torch.bfloat16
#             #     assert loss.dtype == torch.float32
#             #     assert model.transformer.wte.weight.dtype == torch.float32

#         loss = loss/grad_accumulation_steps
#         loss_mini += loss.detach()
#         if ddp:
#             model.require_backward_grad_sync = (micro_step == grad_accumulation_steps - 1)
#         loss.backward()
#     if ddp:
#         dist.all_reduce(loss_mini, op=dist.ReduceOp.AVG)
#     if master_process and step%50==0 and step > 100:
#             print(f"saving at: {step}")            
#             checkpoint_path = os.path.join(log_dir, f"model_{step:05d}.pt")
#             checkpoint = {
#                 'model': raw_model.state_dict(),
#                 'config': raw_model.config,
#                 'step': step
#             }
#             torch.save(checkpoint, checkpoint_path)
#     # grad clip
#     norm = torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)

#     lr = get_lr(step)
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr 

#     optimizer.step()
#     torch.cuda.synchronize()

#     t1 = time.time() 
#     dt = (t1 - t0) 
#     tokens_per_sec = (train_loader.B * train_loader.T * grad_accumulation_steps * ddp_world_size) / (dt)
#     if master_process:
#         # print happens via CPU, hence wait (synchronize GPU)
#         print(f'step : {step+1} | loss: {loss_mini.item()} | lr: {lr:.7f} | dt: {dt* 1000:.2f} ms | tokens/sec: {tokens_per_sec:_.6f} | norm: {norm:.2f}')


# end = time.time()
# print("final loss: ", loss*grad_accumulation_steps)
# print(f"total time: {end - start} seconds")
# torch.save(model.state_dict(), "5k-run-new-DDP.pt")

# if ddp:
#     destroy_process_group()