File size: 12,634 Bytes
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997565c
 
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47a2821
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942f04c
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942f04c
 
e2bd7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
997565c
 
 
066410e
997565c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Required Libraries

#Base and Cleaning
import json
import requests
import pandas as pd
import numpy as np
import emoji
import regex
import re
import string
from collections import Counter
import tqdm
from operator import itemgetter

#Visualizations
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
import pyLDAvis.gensim
import chart_studio
import chart_studio.plotly as py
import chart_studio.tools as tls

#Natural Language Processing (NLP)
import spacy
import gensim
import json
from spacy.tokenizer import Tokenizer
from gensim.corpora import Dictionary
from gensim.models.ldamulticore import LdaMulticore
from gensim.models.coherencemodel import CoherenceModel
from gensim.parsing.preprocessing import STOPWORDS as SW
from sklearn.decomposition import LatentDirichletAllocation, TruncatedSVD
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.model_selection import GridSearchCV
from pprint import pprint
from wordcloud import STOPWORDS
from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric

import gradio as gr

def give_emoji_free_text(text):
    """
    Removes emoji's from tweets
    Accepts:
        Text (tweets)
    Returns:
        Text (emoji free tweets)
    """
    emoji_list = [c for c in text if c in emoji.EMOJI_DATA]
    clean_text = ' '.join([str for str in text.split() if not any(i in str for i in emoji_list)])
    return clean_text

def url_free_text(text):
    '''
    Cleans text from urls
    '''
    text = re.sub(r'http\S+', '', text)
    return text

# Tokenizer function
def tokenize(text):
    """
    Parses a string into a list of semantic units (words)
    Args:
        text (str): The string that the function will tokenize.
    Returns:
        list: tokens parsed out
    """
    # Removing url's
    pattern = r"http\S+"

    tokens = re.sub(pattern, "", text) # https://www.youtube.com/watch?v=O2onA4r5UaY
    tokens = re.sub('[^a-zA-Z 0-9]', '', text)
    tokens = re.sub('[%s]' % re.escape(string.punctuation), '', text) # Remove punctuation
    tokens = re.sub('\w*\d\w*', '', text) # Remove words containing numbers
    # tokens = re.sub('@*!*$*', '', text) # Remove @ ! $
    tokens = tokens.strip(',') # TESTING THIS LINE
    tokens = tokens.strip('?') # TESTING THIS LINE
    tokens = tokens.strip('!') # TESTING THIS LINE
    tokens = tokens.strip("'") # TESTING THIS LINE
    tokens = tokens.strip(".") # TESTING THIS LINE

    tokens = tokens.lower().split() # Make text lowercase and split it

    return tokens

def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=1):
  coherence_values = []
  model_list = []
  for num_topics in range(start, limit, step):
    model = gensim.models.ldamodel.LdaModel(corpus=corpus,
                                            num_topics=num_topics,
                                            random_state=100,
                                            chunksize=200,
                                            passes=10,
                                            per_word_topics=True,
                                            id2word=id2word)
    model_list.append(model)
    coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v')
    coherence_values.append(coherencemodel.get_coherence())

  return model_list, coherence_values

def compute_coherence_values2(corpus, dictionary, k, a, b):
  lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
                                              id2word=id2word,
                                              num_topics=num_topics,
                                              random_state=100,
                                              chunksize=200,
                                              passes=10,
                                              alpha=a,
                                              eta=b,
                                              per_word_topics=True)
  coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v')

  return coherence_model_lda.get_coherence()

def assignTopic(l):
  maxTopic = max(l,key=itemgetter(1))[0]
  return maxTopic

def get_topic_value(row, i):
  if len(row) == 1:
    return row[0][1]
  else:
    return row[i][1]


df = pd.DataFrame()

def dataframeProcessing(dataset):
    # Opening JSON file
    f = open('stopwords-tl.json')
    tlStopwords = json.loads(f.read())
    stopwords = set(STOPWORDS)
    stopwords.update(tlStopwords)
    stopwords.update(['na', 'sa', 'ko', 'ako', 'ng', 'mga', 'ba', 'ka', 'yung', 'lang', 'di', 'mo', 'kasi'])

    df = pd.read_csv('katip-december.csv')
    df.rename(columns = {'tweet':'original_tweets'}, inplace = True)
    df = df.apply(lambda row: row[df['language'].isin(['en'])])
    df.reset_index(inplace=True)

    # Apply the function above and get tweets free of emoji's
    call_emoji_free = lambda x: give_emoji_free_text(x)

    # Apply `call_emoji_free` which calls the function to remove all emoji's
    df['emoji_free_tweets'] = df['original_tweets'].apply(call_emoji_free)

    #Create a new column with url free tweets
    df['url_free_tweets'] = df['emoji_free_tweets'].apply(url_free_text)

    # Load spacy
    # Make sure to restart the runtime after running installations and libraries tab
    nlp = spacy.load('en_core_web_lg')

    # Tokenizer
    tokenizer = Tokenizer(nlp.vocab)


    # Custom stopwords
    custom_stopwords = ['hi','\n','\n\n', '&', ' ', '.', '-', 'got', "it's", 'it’s', "i'm", 'i’m', 'im', 'want', 'like', '$', '@']


    # Customize stop words by adding to the default list
    STOP_WORDS = nlp.Defaults.stop_words.union(custom_stopwords)

    # ALL_STOP_WORDS = spacy + gensim + wordcloud
    ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords)


    tokens = []
    STOP_WORDS.update(stopwords)

    for doc in tokenizer.pipe(df['url_free_tweets'], batch_size=500):
        doc_tokens = []
        for token in doc:
            if token.text.lower() not in STOP_WORDS:
                doc_tokens.append(token.text.lower())
        tokens.append(doc_tokens)

    # Makes tokens column
    df['tokens'] = tokens

    # Make tokens a string again
    df['tokens_back_to_text'] = [' '.join(map(str, l)) for l in df['tokens']]

    def get_lemmas(text):
        '''Used to lemmatize the processed tweets'''
        lemmas = []

        doc = nlp(text)

        # Something goes here :P
        for token in doc:
            if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != 'PRON'):
                lemmas.append(token.lemma_)

        return lemmas

    df['lemmas'] = df['tokens_back_to_text'].apply(get_lemmas)

    # Make lemmas a string again
    df['lemmas_back_to_text'] = [' '.join(map(str, l)) for l in df['lemmas']]

    # Apply tokenizer
    df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)

    # Create a id2word dictionary
    global id2word 
    id2word = Dictionary(df['lemma_tokens'])

    # Filtering Extremes
    id2word.filter_extremes(no_below=2, no_above=.99)
    print(len(id2word))

    # Creating a corpus object
    corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]

    lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
                                                id2word=id2word,
                                                num_topics=5,
                                                random_state=100,
                                                chunksize=200,
                                                passes=10,
                                                per_word_topics=True)

    pprint(lda_model.print_topics())
    doc_lda = lda_model[corpus]

    coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v')
    coherence_lda = coherence_model_lda.get_coherence()

    model_list, coherence_values = compute_coherence_values(dictionary=id2word, corpus=corpus,
                                                            texts=df['lemma_tokens'],
                                                            start=2,
                                                            limit=10,
                                                            step=1)

    k_max = max(coherence_values)

    global num_topics
    num_topics = coherence_values.index(k_max) + 2

    lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
                                                id2word=id2word,
                                                num_topics=num_topics,
                                                random_state=100,
                                                chunksize=200,
                                                passes=10,
                                                per_word_topics=True)

    grid = {}
    grid['Validation_Set'] = {}

    alpha = [0.05, 0.1, 0.5, 1, 5, 10]

    beta = [0.05, 0.1, 0.5, 1, 5, 10]

    num_of_docs = len(corpus)
    corpus_sets = [gensim.utils.ClippedCorpus(corpus, int(num_of_docs*0.75)),
                corpus]
    corpus_title = ['75% Corpus', '100% Corpus']
    model_results = {'Validation_Set': [],
                    'Alpha': [],
                    'Beta': [],
                    'Coherence': []
                    }
    if 1 == 1:
        pbar = tqdm.tqdm(total=540)

    for i in range(len(corpus_sets)):
        for a in alpha:
            for b in beta:
                cv = compute_coherence_values2(corpus=corpus_sets[i], dictionary=id2word, k=num_topics, a=a, b=b)
                model_results['Validation_Set'].append(corpus_title[i])
                model_results['Alpha'].append(a)
                model_results['Beta'].append(b)
                model_results['Coherence'].append(cv)

                pbar.update(1)
    pd.DataFrame(model_results).to_csv('lda_tuning_results_new.csv', index=False)
    pbar.close()

    params_df = pd.read_csv('lda_tuning_results_new.csv')
    params_df = params_df[params_df.Validation_Set == '100% Corpus']
    params_df.reset_index(inplace=True)

    max_params = params_df.loc[params_df['Coherence'].idxmax()]
    max_coherence = max_params['Coherence']
    max_alpha = max_params['Alpha']
    max_beta = max_params['Beta']

    lda_model_final = gensim.models.ldamodel.LdaModel(corpus=corpus,
                                                    id2word=id2word,
                                                    num_topics=7,
                                                    random_state=100,
                                                    chunksize=200,
                                                    passes=10,
                                                    alpha=max_alpha,
                                                    eta=max_beta,
                                                    per_word_topics=True)

    coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
                                        coherence='c_v')
    coherence_lda = coherence_model_lda.get_coherence()

    lda_topics = lda_model_final.show_topics(num_words=10)

    topics = []
    filters = [lambda x: x.lower(), strip_punctuation, strip_numeric]

    for topic in lda_topics:
        print(topic)
        topics.append(preprocess_string(topic[1], filters))

    df['topic'] = [sorted(lda_model_final[corpus][text][0]) for text in range(len(df['original_tweets']))]

    df = df[df['topic'].map(lambda d: len(d)) > 0]
    df['topic'][0]

    df['max_topic'] = df['topic'].map(lambda row: assignTopic(row))

    topic_clusters = []
    for i in range(num_topics):
        topic_clusters.append(df[df['max_topic'].isin(([i]))])
        topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()

    for i in range(len(topic_clusters)):
        tweets = df.loc[df['max_topic'] == i]
        tweets['topic'] = tweets['topic'].apply(lambda x: get_topic_value(x, i))
        # tweets['topic'] = [row[i][1] for row in tweets['topic']]
        tweets_sorted = tweets.sort_values('topic', ascending=False)
        tweets_sorted.drop_duplicates(subset=['original_tweets'])
        rep_tweets = tweets_sorted['original_tweets']
        rep_tweets = [*set(rep_tweets)]
        print('Topic ', i)
        print(rep_tweets[:5])
    
    return df

def greet(name):
    return "Hello " + name + "!!"

iface = gr.Interface(fn=dataframeProcessing, inputs="text", outputs=gr.Dataframe(headers=['original_tweets', 'max_topic']))
iface.launch()