|
|
|
|
|
|
|
import json |
|
import requests |
|
import pandas as pd |
|
import numpy as np |
|
import emoji |
|
import regex |
|
import re |
|
import string |
|
from collections import Counter |
|
import tqdm |
|
from operator import itemgetter |
|
|
|
|
|
import plotly.express as px |
|
import seaborn as sns |
|
import matplotlib.pyplot as plt |
|
import pyLDAvis.gensim |
|
import chart_studio |
|
import chart_studio.plotly as py |
|
import chart_studio.tools as tls |
|
|
|
|
|
import spacy |
|
import gensim |
|
import json |
|
from spacy.tokenizer import Tokenizer |
|
from gensim.corpora import Dictionary |
|
from gensim.models.ldamulticore import LdaMulticore |
|
from gensim.models.coherencemodel import CoherenceModel |
|
from gensim.parsing.preprocessing import STOPWORDS as SW |
|
from sklearn.decomposition import LatentDirichletAllocation, TruncatedSVD |
|
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer |
|
from sklearn.model_selection import GridSearchCV |
|
from pprint import pprint |
|
from wordcloud import STOPWORDS |
|
from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric |
|
|
|
import gradio as gr |
|
|
|
def give_emoji_free_text(text): |
|
""" |
|
Removes emoji's from tweets |
|
Accepts: |
|
Text (tweets) |
|
Returns: |
|
Text (emoji free tweets) |
|
""" |
|
emoji_list = [c for c in text if c in emoji.EMOJI_DATA] |
|
clean_text = ' '.join([str for str in text.split() if not any(i in str for i in emoji_list)]) |
|
return clean_text |
|
|
|
def url_free_text(text): |
|
''' |
|
Cleans text from urls |
|
''' |
|
text = re.sub(r'http\S+', '', text) |
|
return text |
|
|
|
|
|
def tokenize(text): |
|
""" |
|
Parses a string into a list of semantic units (words) |
|
Args: |
|
text (str): The string that the function will tokenize. |
|
Returns: |
|
list: tokens parsed out |
|
""" |
|
|
|
pattern = r"http\S+" |
|
|
|
tokens = re.sub(pattern, "", text) |
|
tokens = re.sub('[^a-zA-Z 0-9]', '', text) |
|
tokens = re.sub('[%s]' % re.escape(string.punctuation), '', text) |
|
tokens = re.sub('\w*\d\w*', '', text) |
|
|
|
tokens = tokens.strip(',') |
|
tokens = tokens.strip('?') |
|
tokens = tokens.strip('!') |
|
tokens = tokens.strip("'") |
|
tokens = tokens.strip(".") |
|
|
|
tokens = tokens.lower().split() |
|
|
|
return tokens |
|
|
|
def compute_coherence_values(dictionary, corpus, texts, limit, start=2, step=1): |
|
coherence_values = [] |
|
model_list = [] |
|
for num_topics in range(start, limit, step): |
|
model = gensim.models.ldamodel.LdaModel(corpus=corpus, |
|
num_topics=num_topics, |
|
random_state=100, |
|
chunksize=200, |
|
passes=10, |
|
per_word_topics=True, |
|
id2word=id2word) |
|
model_list.append(model) |
|
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence='c_v') |
|
coherence_values.append(coherencemodel.get_coherence()) |
|
|
|
return model_list, coherence_values |
|
|
|
def compute_coherence_values2(corpus, dictionary, k, a, b): |
|
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus, |
|
id2word=id2word, |
|
num_topics=num_topics, |
|
random_state=100, |
|
chunksize=200, |
|
passes=10, |
|
alpha=a, |
|
eta=b, |
|
per_word_topics=True) |
|
coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v') |
|
|
|
return coherence_model_lda.get_coherence() |
|
|
|
def assignTopic(l): |
|
maxTopic = max(l,key=itemgetter(1))[0] |
|
return maxTopic |
|
|
|
def get_topic_value(row, i): |
|
if len(row) == 1: |
|
return row[0][1] |
|
else: |
|
return row[i][1] |
|
|
|
|
|
df = pd.DataFrame() |
|
|
|
def dataframeProcessing(dataset): |
|
|
|
f = open('stopwords-tl.json') |
|
tlStopwords = json.loads(f.read()) |
|
stopwords = set(STOPWORDS) |
|
stopwords.update(tlStopwords) |
|
stopwords.update(['na', 'sa', 'ko', 'ako', 'ng', 'mga', 'ba', 'ka', 'yung', 'lang', 'di', 'mo', 'kasi']) |
|
|
|
df = pd.read_csv('katip-december.csv') |
|
df.rename(columns = {'tweet':'original_tweets'}, inplace = True) |
|
df = df.apply(lambda row: row[df['language'].isin(['en'])]) |
|
df.reset_index(inplace=True) |
|
|
|
|
|
call_emoji_free = lambda x: give_emoji_free_text(x) |
|
|
|
|
|
df['emoji_free_tweets'] = df['original_tweets'].apply(call_emoji_free) |
|
|
|
|
|
df['url_free_tweets'] = df['emoji_free_tweets'].apply(url_free_text) |
|
|
|
|
|
|
|
nlp = spacy.load('en_core_web_lg') |
|
|
|
|
|
tokenizer = Tokenizer(nlp.vocab) |
|
|
|
|
|
|
|
custom_stopwords = ['hi','\n','\n\n', '&', ' ', '.', '-', 'got', "it's", 'it’s', "i'm", 'i’m', 'im', 'want', 'like', '$', '@'] |
|
|
|
|
|
|
|
STOP_WORDS = nlp.Defaults.stop_words.union(custom_stopwords) |
|
|
|
|
|
ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords) |
|
|
|
|
|
tokens = [] |
|
STOP_WORDS.update(stopwords) |
|
|
|
for doc in tokenizer.pipe(df['url_free_tweets'], batch_size=500): |
|
doc_tokens = [] |
|
for token in doc: |
|
if token.text.lower() not in STOP_WORDS: |
|
doc_tokens.append(token.text.lower()) |
|
tokens.append(doc_tokens) |
|
|
|
|
|
df['tokens'] = tokens |
|
|
|
|
|
df['tokens_back_to_text'] = [' '.join(map(str, l)) for l in df['tokens']] |
|
|
|
def get_lemmas(text): |
|
'''Used to lemmatize the processed tweets''' |
|
lemmas = [] |
|
|
|
doc = nlp(text) |
|
|
|
|
|
for token in doc: |
|
if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != 'PRON'): |
|
lemmas.append(token.lemma_) |
|
|
|
return lemmas |
|
|
|
df['lemmas'] = df['tokens_back_to_text'].apply(get_lemmas) |
|
|
|
|
|
df['lemmas_back_to_text'] = [' '.join(map(str, l)) for l in df['lemmas']] |
|
|
|
|
|
df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize) |
|
|
|
|
|
id2word = Dictionary(df['lemma_tokens']) |
|
|
|
|
|
id2word.filter_extremes(no_below=2, no_above=.99) |
|
print(len(id2word)) |
|
|
|
|
|
corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']] |
|
|
|
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus, |
|
id2word=id2word, |
|
num_topics=5, |
|
random_state=100, |
|
chunksize=200, |
|
passes=10, |
|
per_word_topics=True) |
|
|
|
pprint(lda_model.print_topics()) |
|
doc_lda = lda_model[corpus] |
|
|
|
coherence_model_lda = CoherenceModel(model=lda_model, texts=df['lemma_tokens'], dictionary=id2word, coherence='c_v') |
|
coherence_lda = coherence_model_lda.get_coherence() |
|
|
|
model_list, coherence_values = compute_coherence_values(dictionary=id2word, corpus=corpus, |
|
texts=df['lemma_tokens'], |
|
start=2, |
|
limit=10, |
|
step=1) |
|
|
|
k_max = max(coherence_values) |
|
num_topics = coherence_values.index(k_max) + 2 |
|
|
|
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus, |
|
id2word=id2word, |
|
num_topics=num_topics, |
|
random_state=100, |
|
chunksize=200, |
|
passes=10, |
|
per_word_topics=True) |
|
|
|
grid = {} |
|
grid['Validation_Set'] = {} |
|
|
|
alpha = [0.05, 0.1, 0.5, 1, 5, 10] |
|
|
|
beta = [0.05, 0.1, 0.5, 1, 5, 10] |
|
|
|
num_of_docs = len(corpus) |
|
corpus_sets = [gensim.utils.ClippedCorpus(corpus, int(num_of_docs*0.75)), |
|
corpus] |
|
corpus_title = ['75% Corpus', '100% Corpus'] |
|
model_results = {'Validation_Set': [], |
|
'Alpha': [], |
|
'Beta': [], |
|
'Coherence': [] |
|
} |
|
if 1 == 1: |
|
pbar = tqdm.tqdm(total=540) |
|
|
|
for i in range(len(corpus_sets)): |
|
for a in alpha: |
|
for b in beta: |
|
cv = compute_coherence_values2(corpus=corpus_sets[i], dictionary=id2word, k=num_topics, a=a, b=b) |
|
model_results['Validation_Set'].append(corpus_title[i]) |
|
model_results['Alpha'].append(a) |
|
model_results['Beta'].append(b) |
|
model_results['Coherence'].append(cv) |
|
|
|
pbar.update(1) |
|
pd.DataFrame(model_results).to_csv('lda_tuning_results_new.csv', index=False) |
|
pbar.close() |
|
|
|
params_df = pd.read_csv('lda_tuning_results_new.csv') |
|
params_df = params_df[params_df.Validation_Set == '100% Corpus'] |
|
params_df.reset_index(inplace=True) |
|
|
|
max_params = params_df.loc[params_df['Coherence'].idxmax()] |
|
max_coherence = max_params['Coherence'] |
|
max_alpha = max_params['Alpha'] |
|
max_beta = max_params['Beta'] |
|
|
|
lda_model_final = gensim.models.ldamodel.LdaModel(corpus=corpus, |
|
id2word=id2word, |
|
num_topics=7, |
|
random_state=100, |
|
chunksize=200, |
|
passes=10, |
|
alpha=max_alpha, |
|
eta=max_beta, |
|
per_word_topics=True) |
|
|
|
coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word, |
|
coherence='c_v') |
|
coherence_lda = coherence_model_lda.get_coherence() |
|
|
|
lda_topics = lda_model_final.show_topics(num_words=10) |
|
|
|
topics = [] |
|
filters = [lambda x: x.lower(), strip_punctuation, strip_numeric] |
|
|
|
for topic in lda_topics: |
|
print(topic) |
|
topics.append(preprocess_string(topic[1], filters)) |
|
|
|
df['topic'] = [sorted(lda_model_final[corpus][text][0]) for text in range(len(df['original_tweets']))] |
|
|
|
df = df[df['topic'].map(lambda d: len(d)) > 0] |
|
df['topic'][0] |
|
|
|
df['max_topic'] = df['topic'].map(lambda row: assignTopic(row)) |
|
|
|
topic_clusters = [] |
|
for i in range(num_topics): |
|
topic_clusters.append(df[df['max_topic'].isin(([i]))]) |
|
topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist() |
|
|
|
for i in range(len(topic_clusters)): |
|
tweets = df.loc[df['max_topic'] == i] |
|
tweets['topic'] = tweets['topic'].apply(lambda x: get_topic_value(x, i)) |
|
|
|
tweets_sorted = tweets.sort_values('topic', ascending=False) |
|
tweets_sorted.drop_duplicates(subset=['original_tweets']) |
|
rep_tweets = tweets_sorted['original_tweets'] |
|
rep_tweets = [*set(rep_tweets)] |
|
print('Topic ', i) |
|
print(rep_tweets[:5]) |
|
|
|
return df |
|
|
|
def greet(name): |
|
return "Hello " + name + "!!" |
|
|
|
iface = gr.Interface(fn=dataframeProcessing, inputs="text", outputs=gr.Dataframe(headers=['original_tweets', 'max_topic'])) |
|
iface.launch() |