compile all lda
Browse files
app.py
CHANGED
@@ -125,7 +125,64 @@ def tokenize(text):
|
|
125 |
|
126 |
return tokens
|
127 |
|
128 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
df.rename(columns = {'tweet':'original_tweets'}, inplace = True)
|
130 |
|
131 |
# Apply the function above and get tweets free of emoji's
|
@@ -184,29 +241,6 @@ def cleaning(df):
|
|
184 |
# Apply tokenizer
|
185 |
df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)
|
186 |
|
187 |
-
def split_corpus(corpus, n):
|
188 |
-
for i in range(0, len(corpus), n):
|
189 |
-
corpus_split = corpus
|
190 |
-
yield corpus_split[i:i + n]
|
191 |
-
|
192 |
-
def compute_coherence_values_base_lda(dictionary, corpus, texts, limit, coherence, start=2, step=1):
|
193 |
-
coherence_values = []
|
194 |
-
model_list = []
|
195 |
-
for num_topics in range(start, limit, step):
|
196 |
-
model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
197 |
-
num_topics=num_topics,
|
198 |
-
random_state=100,
|
199 |
-
chunksize=200,
|
200 |
-
passes=10,
|
201 |
-
per_word_topics=True,
|
202 |
-
id2word=id2word)
|
203 |
-
model_list.append(model)
|
204 |
-
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence=coherence)
|
205 |
-
coherence_values.append(coherencemodel.get_coherence())
|
206 |
-
|
207 |
-
return model_list, coherence_values
|
208 |
-
|
209 |
-
def base_lda():
|
210 |
# Create a id2word dictionary
|
211 |
global id2word
|
212 |
id2word = Dictionary(df['lemma_tokens'])
|
@@ -253,24 +287,6 @@ def base_lda():
|
|
253 |
global num_topics
|
254 |
num_topics = coherence_averages.index(k_max) + 2
|
255 |
|
256 |
-
def compute_coherence_values2(corpus, dictionary, k, a, b):
|
257 |
-
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
258 |
-
id2word=id2word,
|
259 |
-
num_topics=num_topics,
|
260 |
-
random_state=100,
|
261 |
-
chunksize=200,
|
262 |
-
passes=10,
|
263 |
-
alpha=a,
|
264 |
-
eta=b,
|
265 |
-
per_word_topics=True)
|
266 |
-
coherence_model_lda = CoherenceModel(model=lda_model,
|
267 |
-
texts=df['lemma_tokens'],
|
268 |
-
dictionary=id2word,
|
269 |
-
coherence='c_v')
|
270 |
-
|
271 |
-
return coherence_model_lda.get_coherence()
|
272 |
-
|
273 |
-
def hyperparameter_optimization():
|
274 |
grid = {}
|
275 |
grid['Validation_Set'] = {}
|
276 |
|
@@ -337,21 +353,9 @@ def hyperparameter_optimization():
|
|
337 |
per_word_topics=True)
|
338 |
|
339 |
coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
|
340 |
-
|
341 |
coherence_lda = coherence_model_lda.get_coherence()
|
342 |
-
|
343 |
-
return coherence_lda
|
344 |
-
|
345 |
-
def assignMaxTopic(l):
|
346 |
-
maxTopic = max(l,key=itemgetter(1))[0]
|
347 |
-
return maxTopic
|
348 |
-
|
349 |
-
def assignTopic(l):
|
350 |
-
topics = []
|
351 |
-
for x in l:
|
352 |
-
topics.append(x[0])
|
353 |
-
|
354 |
-
def topic_assignment(df):
|
355 |
lda_topics = lda_model_final.show_topics(num_words=10)
|
356 |
|
357 |
topics = []
|
@@ -371,16 +375,6 @@ def topic_assignment(df):
|
|
371 |
topic_clusters.append(df[df['max_topic'].isin(([i]))])
|
372 |
topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()
|
373 |
|
374 |
-
def get_topic_value(row, i):
|
375 |
-
if len(row) == 1:
|
376 |
-
return row[0][1]
|
377 |
-
else:
|
378 |
-
try:
|
379 |
-
return row[i][1]
|
380 |
-
except Exception as e:
|
381 |
-
print(e)
|
382 |
-
|
383 |
-
def reprsentative_tweets():
|
384 |
global top_tweets
|
385 |
top_tweets = []
|
386 |
for i in range(len(topic_clusters)):
|
@@ -394,6 +388,7 @@ def reprsentative_tweets():
|
|
394 |
top_tweets.append(rep_tweets[:5])
|
395 |
# print('Topic ', i)
|
396 |
# print(rep_tweets[:5])
|
|
|
397 |
return top_tweets
|
398 |
|
399 |
def topic_summarization(topic_groups):
|
@@ -521,14 +516,10 @@ def main(dataset, model):
|
|
521 |
print(dataset)
|
522 |
place_data = str(scrape(keyword_list))
|
523 |
print(df)
|
524 |
-
cleaning(df)
|
525 |
|
526 |
print(df)
|
527 |
if model == 'LDA':
|
528 |
-
|
529 |
-
coherence = hyperparameter_optimization()
|
530 |
-
topic_assignment(df)
|
531 |
-
top_tweets = reprsentative_tweets()
|
532 |
else:
|
533 |
base_bertopic()
|
534 |
optimized_bertopic()
|
|
|
125 |
|
126 |
return tokens
|
127 |
|
128 |
+
def split_corpus(corpus, n):
|
129 |
+
for i in range(0, len(corpus), n):
|
130 |
+
corpus_split = corpus
|
131 |
+
yield corpus_split[i:i + n]
|
132 |
+
|
133 |
+
def compute_coherence_values_base_lda(dictionary, corpus, texts, limit, coherence, start=2, step=1):
|
134 |
+
coherence_values = []
|
135 |
+
model_list = []
|
136 |
+
for num_topics in range(start, limit, step):
|
137 |
+
model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
138 |
+
num_topics=num_topics,
|
139 |
+
random_state=100,
|
140 |
+
chunksize=200,
|
141 |
+
passes=10,
|
142 |
+
per_word_topics=True,
|
143 |
+
id2word=id2word)
|
144 |
+
model_list.append(model)
|
145 |
+
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence=coherence)
|
146 |
+
coherence_values.append(coherencemodel.get_coherence())
|
147 |
+
|
148 |
+
return model_list, coherence_values
|
149 |
+
|
150 |
+
def compute_coherence_values2(corpus, dictionary, k, a, b):
|
151 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
152 |
+
id2word=id2word,
|
153 |
+
num_topics=num_topics,
|
154 |
+
random_state=100,
|
155 |
+
chunksize=200,
|
156 |
+
passes=10,
|
157 |
+
alpha=a,
|
158 |
+
eta=b,
|
159 |
+
per_word_topics=True)
|
160 |
+
coherence_model_lda = CoherenceModel(model=lda_model,
|
161 |
+
texts=df['lemma_tokens'],
|
162 |
+
dictionary=id2word,
|
163 |
+
coherence='c_v')
|
164 |
+
|
165 |
+
return coherence_model_lda.get_coherence()
|
166 |
+
|
167 |
+
def assignMaxTopic(l):
|
168 |
+
maxTopic = max(l,key=itemgetter(1))[0]
|
169 |
+
return maxTopic
|
170 |
+
|
171 |
+
def assignTopic(l):
|
172 |
+
topics = []
|
173 |
+
for x in l:
|
174 |
+
topics.append(x[0])
|
175 |
+
|
176 |
+
def get_topic_value(row, i):
|
177 |
+
if len(row) == 1:
|
178 |
+
return row[0][1]
|
179 |
+
else:
|
180 |
+
try:
|
181 |
+
return row[i][1]
|
182 |
+
except Exception as e:
|
183 |
+
print(e)
|
184 |
+
|
185 |
+
def full_lda():
|
186 |
df.rename(columns = {'tweet':'original_tweets'}, inplace = True)
|
187 |
|
188 |
# Apply the function above and get tweets free of emoji's
|
|
|
241 |
# Apply tokenizer
|
242 |
df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)
|
243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
# Create a id2word dictionary
|
245 |
global id2word
|
246 |
id2word = Dictionary(df['lemma_tokens'])
|
|
|
287 |
global num_topics
|
288 |
num_topics = coherence_averages.index(k_max) + 2
|
289 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
grid = {}
|
291 |
grid['Validation_Set'] = {}
|
292 |
|
|
|
353 |
per_word_topics=True)
|
354 |
|
355 |
coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
|
356 |
+
coherence='c_v')
|
357 |
coherence_lda = coherence_model_lda.get_coherence()
|
358 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
lda_topics = lda_model_final.show_topics(num_words=10)
|
360 |
|
361 |
topics = []
|
|
|
375 |
topic_clusters.append(df[df['max_topic'].isin(([i]))])
|
376 |
topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
global top_tweets
|
379 |
top_tweets = []
|
380 |
for i in range(len(topic_clusters)):
|
|
|
388 |
top_tweets.append(rep_tweets[:5])
|
389 |
# print('Topic ', i)
|
390 |
# print(rep_tweets[:5])
|
391 |
+
|
392 |
return top_tweets
|
393 |
|
394 |
def topic_summarization(topic_groups):
|
|
|
516 |
print(dataset)
|
517 |
place_data = str(scrape(keyword_list))
|
518 |
print(df)
|
|
|
519 |
|
520 |
print(df)
|
521 |
if model == 'LDA':
|
522 |
+
top_tweets = full_lda()
|
|
|
|
|
|
|
523 |
else:
|
524 |
base_bertopic()
|
525 |
optimized_bertopic()
|
appv1.py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import tweepy
|
3 |
+
import re
|
4 |
+
import emoji
|
5 |
+
import spacy
|
6 |
+
import gensim
|
7 |
+
import json
|
8 |
+
import string
|
9 |
+
|
10 |
+
from spacy.tokenizer import Tokenizer
|
11 |
+
from gensim.parsing.preprocessing import STOPWORDS as SW
|
12 |
+
from wordcloud import STOPWORDS
|
13 |
+
|
14 |
+
from gensim.corpora import Dictionary
|
15 |
+
from gensim.models.coherencemodel import CoherenceModel
|
16 |
+
from pprint import pprint
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import tqdm
|
20 |
+
|
21 |
+
from gensim.parsing.preprocessing import preprocess_string, strip_punctuation, strip_numeric
|
22 |
+
|
23 |
+
import torch
|
24 |
+
from transformers import T5ForConditionalGeneration,T5Tokenizer
|
25 |
+
from googletrans import Translator
|
26 |
+
|
27 |
+
from bertopic import BERTopic
|
28 |
+
from umap import UMAP
|
29 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
30 |
+
|
31 |
+
from operator import itemgetter
|
32 |
+
|
33 |
+
import gradio as gr
|
34 |
+
|
35 |
+
global df
|
36 |
+
bearer_token = 'AAAAAAAAAAAAAAAAAAAAACEigwEAAAAACoP8KHJYLOKCL4OyB9LEPV00VB0%3DmyeDROUvw4uipHwvbPPfnTuY0M9ORrLuXrMvcByqZhwo3SUc4F'
|
37 |
+
client = tweepy.Client(bearer_token=bearer_token)
|
38 |
+
nlp = spacy.load('en_core_web_lg')
|
39 |
+
print('hi')
|
40 |
+
|
41 |
+
def scrape(keywords):
|
42 |
+
query = keywords + ' (lang:en OR lang:tl) -is:retweet'
|
43 |
+
max_results = 100
|
44 |
+
tweet_fields=['geo', 'id', 'lang', 'created_at']
|
45 |
+
expansions=['geo.place_id']
|
46 |
+
place_fields = ['contained_within', 'country', 'country_code', 'full_name', 'geo', 'id', 'name', 'place_type']
|
47 |
+
|
48 |
+
response = client.search_recent_tweets(
|
49 |
+
query=query,
|
50 |
+
max_results=max_results,
|
51 |
+
tweet_fields=tweet_fields,
|
52 |
+
expansions=expansions,
|
53 |
+
place_fields=place_fields
|
54 |
+
)
|
55 |
+
|
56 |
+
tweets = []
|
57 |
+
for x in response[0]:
|
58 |
+
tweets.append(str(x))
|
59 |
+
|
60 |
+
place_data = response[1]
|
61 |
+
|
62 |
+
df = pd.DataFrame(tweets, columns=['tweet'])
|
63 |
+
|
64 |
+
return place_data
|
65 |
+
|
66 |
+
def get_example(dataset):
|
67 |
+
df = pd.read_csv(dataset + '.csv')
|
68 |
+
return df
|
69 |
+
|
70 |
+
def give_emoji_free_text(text):
|
71 |
+
"""
|
72 |
+
Removes emoji's from tweets
|
73 |
+
Accepts:
|
74 |
+
Text (tweets)
|
75 |
+
Returns:
|
76 |
+
Text (emoji free tweets)
|
77 |
+
"""
|
78 |
+
emoji_list = [c for c in text if c in emoji.EMOJI_DATA]
|
79 |
+
clean_text = ' '.join([str for str in text.split() if not any(i in str for i in emoji_list)])
|
80 |
+
return clean_text
|
81 |
+
|
82 |
+
def url_free_text(text):
|
83 |
+
'''
|
84 |
+
Cleans text from urls
|
85 |
+
'''
|
86 |
+
text = re.sub(r'http\S+', '', text)
|
87 |
+
return text
|
88 |
+
|
89 |
+
def get_lemmas(text):
|
90 |
+
'''Used to lemmatize the processed tweets'''
|
91 |
+
lemmas = []
|
92 |
+
|
93 |
+
doc = nlp(text)
|
94 |
+
|
95 |
+
for token in doc:
|
96 |
+
if ((token.is_stop == False) and (token.is_punct == False)) and (token.pos_ != 'PRON'):
|
97 |
+
lemmas.append(token.lemma_)
|
98 |
+
|
99 |
+
return lemmas
|
100 |
+
|
101 |
+
# Tokenizer function
|
102 |
+
def tokenize(text):
|
103 |
+
"""
|
104 |
+
Parses a string into a list of semantic units (words)
|
105 |
+
Args:
|
106 |
+
text (str): The string that the function will tokenize.
|
107 |
+
Returns:
|
108 |
+
list: tokens parsed out
|
109 |
+
"""
|
110 |
+
# Removing url's
|
111 |
+
pattern = r"http\S+"
|
112 |
+
|
113 |
+
tokens = re.sub(pattern, "", text) # https://www.youtube.com/watch?v=O2onA4r5UaY
|
114 |
+
tokens = re.sub('[^a-zA-Z 0-9]', '', text)
|
115 |
+
tokens = re.sub('[%s]' % re.escape(string.punctuation), '', text) # Remove punctuation
|
116 |
+
tokens = re.sub('\w*\d\w*', '', text) # Remove words containing numbers
|
117 |
+
# tokens = re.sub('@*!*$*', '', text) # Remove @ ! $
|
118 |
+
tokens = tokens.strip(',') # TESTING THIS LINE
|
119 |
+
tokens = tokens.strip('?') # TESTING THIS LINE
|
120 |
+
tokens = tokens.strip('!') # TESTING THIS LINE
|
121 |
+
tokens = tokens.strip("'") # TESTING THIS LINE
|
122 |
+
tokens = tokens.strip(".") # TESTING THIS LINE
|
123 |
+
|
124 |
+
tokens = tokens.lower().split() # Make text lowercase and split it
|
125 |
+
|
126 |
+
return tokens
|
127 |
+
|
128 |
+
|
129 |
+
def cleaning(df):
|
130 |
+
df.rename(columns = {'tweet':'original_tweets'}, inplace = True)
|
131 |
+
|
132 |
+
# Apply the function above and get tweets free of emoji's
|
133 |
+
call_emoji_free = lambda x: give_emoji_free_text(x)
|
134 |
+
|
135 |
+
# Apply `call_emoji_free` which calls the function to remove all emoji's
|
136 |
+
df['emoji_free_tweets'] = df['original_tweets'].apply(call_emoji_free)
|
137 |
+
|
138 |
+
#Create a new column with url free tweets
|
139 |
+
df['url_free_tweets'] = df['emoji_free_tweets'].apply(url_free_text)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
f = open('stopwords-tl.json')
|
144 |
+
tlStopwords = json.loads(f.read())
|
145 |
+
stopwords = set(STOPWORDS)
|
146 |
+
stopwords.update(tlStopwords)
|
147 |
+
stopwords.update(['na', 'sa', 'ko', 'ako', 'ng', 'mga', 'ba', 'ka', 'yung', 'lang', 'di', 'mo', 'kasi'])
|
148 |
+
|
149 |
+
# Tokenizer
|
150 |
+
tokenizer = Tokenizer(nlp.vocab)
|
151 |
+
|
152 |
+
|
153 |
+
# Custom stopwords
|
154 |
+
custom_stopwords = ['hi','\n','\n\n', '&', ' ', '.', '-', 'got', "it's", 'it’s', "i'm", 'i’m', 'im', 'want', 'like', '$', '@']
|
155 |
+
|
156 |
+
|
157 |
+
# Customize stop words by adding to the default list
|
158 |
+
STOP_WORDS = nlp.Defaults.stop_words.union(custom_stopwords)
|
159 |
+
|
160 |
+
# ALL_STOP_WORDS = spacy + gensim + wordcloud
|
161 |
+
ALL_STOP_WORDS = STOP_WORDS.union(SW).union(stopwords)
|
162 |
+
|
163 |
+
|
164 |
+
tokens = []
|
165 |
+
STOP_WORDS.update(stopwords)
|
166 |
+
|
167 |
+
for doc in tokenizer.pipe(df['url_free_tweets'], batch_size=500):
|
168 |
+
doc_tokens = []
|
169 |
+
for token in doc:
|
170 |
+
if token.text.lower() not in STOP_WORDS:
|
171 |
+
doc_tokens.append(token.text.lower())
|
172 |
+
tokens.append(doc_tokens)
|
173 |
+
|
174 |
+
# Makes tokens column
|
175 |
+
df['tokens'] = tokens
|
176 |
+
|
177 |
+
# Make tokens a string again
|
178 |
+
df['tokens_back_to_text'] = [' '.join(map(str, l)) for l in df['tokens']]
|
179 |
+
|
180 |
+
df['lemmas'] = df['tokens_back_to_text'].apply(get_lemmas)
|
181 |
+
|
182 |
+
# Make lemmas a string again
|
183 |
+
df['lemmas_back_to_text'] = [' '.join(map(str, l)) for l in df['lemmas']]
|
184 |
+
|
185 |
+
# Apply tokenizer
|
186 |
+
df['lemma_tokens'] = df['lemmas_back_to_text'].apply(tokenize)
|
187 |
+
|
188 |
+
def split_corpus(corpus, n):
|
189 |
+
for i in range(0, len(corpus), n):
|
190 |
+
corpus_split = corpus
|
191 |
+
yield corpus_split[i:i + n]
|
192 |
+
|
193 |
+
def compute_coherence_values_base_lda(dictionary, corpus, texts, limit, coherence, start=2, step=1):
|
194 |
+
coherence_values = []
|
195 |
+
model_list = []
|
196 |
+
for num_topics in range(start, limit, step):
|
197 |
+
model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
198 |
+
num_topics=num_topics,
|
199 |
+
random_state=100,
|
200 |
+
chunksize=200,
|
201 |
+
passes=10,
|
202 |
+
per_word_topics=True,
|
203 |
+
id2word=id2word)
|
204 |
+
model_list.append(model)
|
205 |
+
coherencemodel = CoherenceModel(model=model, texts=texts, dictionary=dictionary, coherence=coherence)
|
206 |
+
coherence_values.append(coherencemodel.get_coherence())
|
207 |
+
|
208 |
+
return model_list, coherence_values
|
209 |
+
|
210 |
+
def base_lda():
|
211 |
+
# Create a id2word dictionary
|
212 |
+
global id2word
|
213 |
+
id2word = Dictionary(df['lemma_tokens'])
|
214 |
+
|
215 |
+
# Filtering Extremes
|
216 |
+
id2word.filter_extremes(no_below=2, no_above=.99)
|
217 |
+
|
218 |
+
# Creating a corpus object
|
219 |
+
global corpus
|
220 |
+
corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]
|
221 |
+
global corpus_og
|
222 |
+
corpus_og = [id2word.doc2bow(d) for d in df['lemma_tokens']]
|
223 |
+
|
224 |
+
corpus_split = corpus
|
225 |
+
split_corpus(corpus_split, 5)
|
226 |
+
|
227 |
+
global coherence
|
228 |
+
coherence = 'c_v'
|
229 |
+
|
230 |
+
coherence_averages = [0] * 8
|
231 |
+
for i in range(5):
|
232 |
+
training_corpus = corpus_split
|
233 |
+
training_corpus.remove(training_corpus[i])
|
234 |
+
print(training_corpus[i])
|
235 |
+
model_list, coherence_values = compute_coherence_values_base_lda(dictionary=id2word, corpus=training_corpus,
|
236 |
+
texts=df['lemma_tokens'],
|
237 |
+
start=2,
|
238 |
+
limit=10,
|
239 |
+
step=1,
|
240 |
+
coherence=coherence)
|
241 |
+
for j in range(len(coherence_values)):
|
242 |
+
coherence_averages[j] += coherence_values[j]
|
243 |
+
|
244 |
+
limit = 10; start = 2; step = 1;
|
245 |
+
x = range(start, limit, step)
|
246 |
+
|
247 |
+
coherence_averages = [x / 5 for x in coherence_averages]
|
248 |
+
|
249 |
+
if coherence == 'c_v':
|
250 |
+
k_max = max(coherence_averages)
|
251 |
+
else:
|
252 |
+
k_max = min(coherence_averages, key=abs)
|
253 |
+
|
254 |
+
global num_topics
|
255 |
+
num_topics = coherence_averages.index(k_max) + 2
|
256 |
+
|
257 |
+
def compute_coherence_values2(corpus, dictionary, k, a, b):
|
258 |
+
lda_model = gensim.models.ldamodel.LdaModel(corpus=corpus,
|
259 |
+
id2word=id2word,
|
260 |
+
num_topics=num_topics,
|
261 |
+
random_state=100,
|
262 |
+
chunksize=200,
|
263 |
+
passes=10,
|
264 |
+
alpha=a,
|
265 |
+
eta=b,
|
266 |
+
per_word_topics=True)
|
267 |
+
coherence_model_lda = CoherenceModel(model=lda_model,
|
268 |
+
texts=df['lemma_tokens'],
|
269 |
+
dictionary=id2word,
|
270 |
+
coherence='c_v')
|
271 |
+
|
272 |
+
return coherence_model_lda.get_coherence()
|
273 |
+
|
274 |
+
def hyperparameter_optimization():
|
275 |
+
grid = {}
|
276 |
+
grid['Validation_Set'] = {}
|
277 |
+
|
278 |
+
min_topics = 1
|
279 |
+
max_topics = 10
|
280 |
+
step_size = 1
|
281 |
+
topics_range = range(min_topics, max_topics, step_size)
|
282 |
+
|
283 |
+
alpha = [0.05, 0.1, 0.5, 1, 5, 10]
|
284 |
+
# alpha.append('symmetric')
|
285 |
+
# alpha.append('asymmetric')
|
286 |
+
|
287 |
+
beta = [0.05, 0.1, 0.5, 1, 5, 10]
|
288 |
+
# beta.append('symmetric')
|
289 |
+
|
290 |
+
num_of_docs = len(corpus_og)
|
291 |
+
corpus_sets = [gensim.utils.ClippedCorpus(corpus_og, int(num_of_docs*0.75)),
|
292 |
+
corpus_og]
|
293 |
+
corpus_title = ['75% Corpus', '100% Corpus']
|
294 |
+
model_results = {'Validation_Set': [],
|
295 |
+
'Alpha': [],
|
296 |
+
'Beta': [],
|
297 |
+
'Coherence': []
|
298 |
+
}
|
299 |
+
if 1 == 1:
|
300 |
+
pbar = tqdm.tqdm(total=540)
|
301 |
+
|
302 |
+
for i in range(len(corpus_sets)):
|
303 |
+
for a in alpha:
|
304 |
+
for b in beta:
|
305 |
+
cv = compute_coherence_values2(corpus=corpus_sets[i],
|
306 |
+
dictionary=id2word,
|
307 |
+
k=num_topics,
|
308 |
+
a=a,
|
309 |
+
b=b)
|
310 |
+
model_results['Validation_Set'].append(corpus_title[i])
|
311 |
+
model_results['Alpha'].append(a)
|
312 |
+
model_results['Beta'].append(b)
|
313 |
+
model_results['Coherence'].append(cv)
|
314 |
+
|
315 |
+
pbar.update(1)
|
316 |
+
pd.DataFrame(model_results).to_csv('lda_tuning_results_new.csv', index=False)
|
317 |
+
pbar.close()
|
318 |
+
|
319 |
+
params_df = pd.read_csv('lda_tuning_results_new.csv')
|
320 |
+
params_df = params_df[params_df.Validation_Set == '75% Corpus']
|
321 |
+
params_df.reset_index(inplace=True)
|
322 |
+
params_df = params_df.replace(np.inf, -np.inf)
|
323 |
+
max_params = params_df.loc[params_df['Coherence'].idxmax()]
|
324 |
+
max_coherence = max_params['Coherence']
|
325 |
+
max_alpha = max_params['Alpha']
|
326 |
+
max_beta = max_params['Beta']
|
327 |
+
max_validation_set = max_params['Validation_Set']
|
328 |
+
|
329 |
+
global lda_model_final
|
330 |
+
lda_model_final = gensim.models.ldamodel.LdaModel(corpus=corpus_og,
|
331 |
+
id2word=id2word,
|
332 |
+
num_topics=num_topics,
|
333 |
+
random_state=100,
|
334 |
+
chunksize=200,
|
335 |
+
passes=10,
|
336 |
+
alpha=max_alpha,
|
337 |
+
eta=max_beta,
|
338 |
+
per_word_topics=True)
|
339 |
+
|
340 |
+
coherence_model_lda = CoherenceModel(model=lda_model_final, texts=df['lemma_tokens'], dictionary=id2word,
|
341 |
+
coherence='c_v')
|
342 |
+
coherence_lda = coherence_model_lda.get_coherence()
|
343 |
+
|
344 |
+
return coherence_lda
|
345 |
+
|
346 |
+
def assignMaxTopic(l):
|
347 |
+
maxTopic = max(l,key=itemgetter(1))[0]
|
348 |
+
return maxTopic
|
349 |
+
|
350 |
+
def assignTopic(l):
|
351 |
+
topics = []
|
352 |
+
for x in l:
|
353 |
+
topics.append(x[0])
|
354 |
+
|
355 |
+
def topic_assignment(df):
|
356 |
+
lda_topics = lda_model_final.show_topics(num_words=10)
|
357 |
+
|
358 |
+
topics = []
|
359 |
+
filters = [lambda x: x.lower(), strip_punctuation, strip_numeric]
|
360 |
+
|
361 |
+
for topic in lda_topics:
|
362 |
+
topics.append(preprocess_string(topic[1], filters))
|
363 |
+
|
364 |
+
df['topic'] = [sorted(lda_model_final[corpus_og][text][0]) for text in range(len(df['original_tweets']))]
|
365 |
+
|
366 |
+
df = df[df['topic'].map(lambda d: len(d)) > 0]
|
367 |
+
df['max_topic'] = df['topic'].map(lambda row: assignMaxTopic(row))
|
368 |
+
|
369 |
+
global topic_clusters
|
370 |
+
topic_clusters = []
|
371 |
+
for i in range(num_topics):
|
372 |
+
topic_clusters.append(df[df['max_topic'].isin(([i]))])
|
373 |
+
topic_clusters[i] = topic_clusters[i]['original_tweets'].tolist()
|
374 |
+
|
375 |
+
def get_topic_value(row, i):
|
376 |
+
if len(row) == 1:
|
377 |
+
return row[0][1]
|
378 |
+
else:
|
379 |
+
try:
|
380 |
+
return row[i][1]
|
381 |
+
except Exception as e:
|
382 |
+
print(e)
|
383 |
+
|
384 |
+
def reprsentative_tweets():
|
385 |
+
global top_tweets
|
386 |
+
top_tweets = []
|
387 |
+
for i in range(len(topic_clusters)):
|
388 |
+
tweets = df.loc[df['max_topic'] == i]
|
389 |
+
tweets['topic'] = tweets['topic'].apply(lambda x: get_topic_value(x, i))
|
390 |
+
# tweets['topic'] = [row[i][1] for row in tweets['topic']]
|
391 |
+
tweets_sorted = tweets.sort_values('topic', ascending=False)
|
392 |
+
tweets_sorted.drop_duplicates(subset=['original_tweets'])
|
393 |
+
rep_tweets = tweets_sorted['original_tweets']
|
394 |
+
rep_tweets = [*set(rep_tweets)]
|
395 |
+
top_tweets.append(rep_tweets[:5])
|
396 |
+
# print('Topic ', i)
|
397 |
+
# print(rep_tweets[:5])
|
398 |
+
return top_tweets
|
399 |
+
|
400 |
+
def topic_summarization(topic_groups):
|
401 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
402 |
+
|
403 |
+
model = T5ForConditionalGeneration.from_pretrained("Michau/t5-base-en-generate-headline")
|
404 |
+
tokenizer = T5Tokenizer.from_pretrained("Michau/t5-base-en-generate-headline")
|
405 |
+
model = model.to(device)
|
406 |
+
translator = Translator()
|
407 |
+
|
408 |
+
headlines = []
|
409 |
+
for i in range(len(topic_groups)):
|
410 |
+
tweets = " ".join(topic_groups[i])
|
411 |
+
# print(tweets)
|
412 |
+
out = translator.translate(tweets, dest='en')
|
413 |
+
text = out.text
|
414 |
+
# print(tweets)
|
415 |
+
|
416 |
+
max_len = 256
|
417 |
+
|
418 |
+
encoding = tokenizer.encode_plus(text, return_tensors = "pt")
|
419 |
+
input_ids = encoding["input_ids"].to(device)
|
420 |
+
attention_masks = encoding["attention_mask"].to(device)
|
421 |
+
|
422 |
+
beam_outputs = model.generate(
|
423 |
+
input_ids = input_ids,
|
424 |
+
attention_mask = attention_masks,
|
425 |
+
max_length = 64,
|
426 |
+
num_beams = 3,
|
427 |
+
early_stopping = True,
|
428 |
+
)
|
429 |
+
|
430 |
+
result = tokenizer.decode(beam_outputs[0])
|
431 |
+
headlines += "Topic " + str(i) + " " + result
|
432 |
+
|
433 |
+
return headlines
|
434 |
+
|
435 |
+
def compute_coherence_value_bertopic(topic_model):
|
436 |
+
topic_words = [[words for words, _ in topic_model.get_topic(topic)] for topic in range(len(set(topics))-1)]
|
437 |
+
coherence_model = CoherenceModel(topics=topic_words,
|
438 |
+
texts=df['lemma_tokens'],
|
439 |
+
corpus=corpus,
|
440 |
+
dictionary=id2word,
|
441 |
+
coherence=coherence)
|
442 |
+
coherence_score = coherence_model.get_coherence()
|
443 |
+
|
444 |
+
return coherence_score
|
445 |
+
|
446 |
+
def base_bertopic():
|
447 |
+
df['lemma_tokens_string'] = df['lemma_tokens'].apply(lambda x: ' '.join(x))
|
448 |
+
global id2word
|
449 |
+
id2word = Dictionary(df['lemma_tokens'])
|
450 |
+
global corpus
|
451 |
+
corpus = [id2word.doc2bow(d) for d in df['lemma_tokens']]
|
452 |
+
|
453 |
+
global umap_model
|
454 |
+
umap_model = UMAP(n_neighbors=15,
|
455 |
+
n_components=5,
|
456 |
+
min_dist=0.0,
|
457 |
+
metric='cosine',
|
458 |
+
random_state=100)
|
459 |
+
|
460 |
+
base_topic_model = BERTopic(umap_model=umap_model, language="english", calculate_probabilities=True)
|
461 |
+
|
462 |
+
topics, probabilities = base_topic_model.fit_transform(df['lemma_tokens_string'])
|
463 |
+
|
464 |
+
try:
|
465 |
+
print(compute_coherence_value_bertopic(base_topic_model))
|
466 |
+
except:
|
467 |
+
print('Unable to generate meaningful topics (Base BERTopic model)')
|
468 |
+
|
469 |
+
def optimized_bertopic():
|
470 |
+
vectorizer_model = CountVectorizer(max_features=1_000, stop_words="english")
|
471 |
+
optimized_topic_model = BERTopic(umap_model=umap_model,
|
472 |
+
language="multilingual",
|
473 |
+
n_gram_range=(1, 3),
|
474 |
+
vectorizer_model=vectorizer_model,
|
475 |
+
calculate_probabilities=True)
|
476 |
+
|
477 |
+
topics, probabilities = optimized_topic_model.fit_transform(df['lemma_tokens_string'])
|
478 |
+
|
479 |
+
try:
|
480 |
+
print(compute_coherence_value_bertopic(optimized_topic_model))
|
481 |
+
except:
|
482 |
+
print('Unable to generate meaningful topics, base BERTopic model if possible')
|
483 |
+
|
484 |
+
rep_docs = optimized_topic_model.representative_docs_
|
485 |
+
|
486 |
+
global top_tweets
|
487 |
+
top_tweets = []
|
488 |
+
|
489 |
+
for topic in rep_docs:
|
490 |
+
if topic == -1:
|
491 |
+
print('test')
|
492 |
+
continue
|
493 |
+
topic_docs = rep_docs.get(topic)
|
494 |
+
|
495 |
+
tweets = []
|
496 |
+
for doc in topic_docs:
|
497 |
+
index = df.isin([doc]).any(axis=1).idxmax()
|
498 |
+
# print(index)
|
499 |
+
tweets.append(df.loc[index, 'original_tweets'])
|
500 |
+
print(tweets)
|
501 |
+
top_tweets.append(tweets)
|
502 |
+
|
503 |
+
global examples
|
504 |
+
|
505 |
+
def main(dataset, model):
|
506 |
+
global df
|
507 |
+
examples = [ "katip,katipunan",
|
508 |
+
"bgc,bonifacio global city",
|
509 |
+
"pobla,poblacion",
|
510 |
+
"cubao",
|
511 |
+
"taft"
|
512 |
+
]
|
513 |
+
keyword_list = dataset.split(',')
|
514 |
+
if len(keyword_list) > 1:
|
515 |
+
keywords = '(' + ' OR '.join(keyword_list) + ')'
|
516 |
+
else:
|
517 |
+
keywords = keyword_list[0]
|
518 |
+
if dataset in examples:
|
519 |
+
df = get_example(keywords)
|
520 |
+
place_data = 'test'
|
521 |
+
else:
|
522 |
+
print(dataset)
|
523 |
+
place_data = str(scrape(keyword_list))
|
524 |
+
print(df)
|
525 |
+
cleaning(df)
|
526 |
+
|
527 |
+
print(df)
|
528 |
+
if model == 'LDA':
|
529 |
+
base_lda()
|
530 |
+
coherence = hyperparameter_optimization()
|
531 |
+
topic_assignment(df)
|
532 |
+
top_tweets = reprsentative_tweets()
|
533 |
+
else:
|
534 |
+
base_bertopic()
|
535 |
+
optimized_bertopic()
|
536 |
+
|
537 |
+
headlines = topic_summarization(top_tweets)
|
538 |
+
headlines = '\n'.join(str(h) for h in headlines)
|
539 |
+
|
540 |
+
|
541 |
+
|
542 |
+
return place_data, headlines
|
543 |
+
|
544 |
+
|
545 |
+
iface = gr.Interface(fn=main,
|
546 |
+
inputs=[gr.Dropdown(["katip,katipunan",
|
547 |
+
"bgc,bonifacio global city",
|
548 |
+
"cubao",
|
549 |
+
"taft",
|
550 |
+
"pobla,poblacion"],
|
551 |
+
label="Dataset"),
|
552 |
+
gr.Dropdown(["LDA",
|
553 |
+
"BERTopic"],
|
554 |
+
label="Model")
|
555 |
+
],
|
556 |
+
# examples=examples,
|
557 |
+
outputs=["text",
|
558 |
+
"text"])
|
559 |
+
iface.launch()
|