File size: 3,784 Bytes
ce78f1b
 
 
9ab2b8f
ce78f1b
9ab2b8f
 
ce78f1b
9ab2b8f
ce78f1b
 
 
 
9ab2b8f
ce78f1b
9ab2b8f
 
ce78f1b
9ab2b8f
 
ce78f1b
9ab2b8f
 
 
ce78f1b
 
 
 
9ab2b8f
ce78f1b
 
 
 
9ab2b8f
ce78f1b
 
 
 
9ab2b8f
ce78f1b
 
 
 
 
 
 
 
 
 
 
9ab2b8f
 
 
 
269a39e
9ab2b8f
 
269a39e
9ab2b8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269a39e
9ab2b8f
 
 
 
 
 
 
 
 
 
 
 
ce78f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from threading import Thread
import gradio as gr
import torch
import os

device = "cuda"

model_name = "mistralai/mathstral-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,
                torch_dtype=torch.float16).to(device)

HF_TOKEN = os.environ['HF_TOKEN']

def format_prompt(message, history):
  prompt = ""
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response} "
  prompt += f"[INST] {message} [/INST]"
  return prompt

@spaces.GPU
def generate(prompt, history,
             max_new_tokens=1024,
             repetition_penalty=1.2):
    
    formatted_prompt = format_prompt(prompt, history)
    inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)

    streamer = TextIteratorStreamer(tokenizer)
    generate_kwargs = dict(
            inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            repetition_penalty=repetition_penalty,
    )

    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    text = ''
    n = len('<s>') + len(formatted_prompt)
    for word in streamer:
        text += word
        yield text[n:]
    return text[n:]


additional_inputs=[
    gr.Slider(
        label="Max new tokens",
        value=1024,
        minimum=0,
        maximum=4096,
        step=256,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    ),
]

css = """
  #mkd {
    height: 500px;
    overflow: auto;
    border: 1px solid #ccc;
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Mathstral Test</center><h1>")
    gr.HTML("<h3><center>Dans cette démo, vous pouvez poser des questions mathématiques et scientifiques à Mathstral. 🧮</center><h3>")
    gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,
        theme = gr.themes.Soft(),
        cache_examples=False,
        examples=[ [l.strip()] for l in open("exercices.md").readlines()],
        chatbot = gr.Chatbot(
            latex_delimiters=[
                {"left" : "$$", "right": "$$", "display": True },
                {"left" : "\\[", "right": "\\]", "display": True },
                {"left" : "\\(", "right": "\\)", "display": False },
                {"left": "$", "right": "$", "display": False }
                ]
            )
    )

demo.queue(max_size=100).launch(debug=True)
  : raisonnement mathématiques et scientifique"
    ),
]

css = """
  #mkd {
    height: 500px;
    overflow: auto;
    border: 1px solid #ccc;
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Mathstral Test</center><h1>")
    gr.HTML("<h3><center>Dans cette démo, vous pouvez poser des questions mathématiques et scientifiques à Mathstral. 🧮</center><h3>")
    gr.ChatInterface(
        generate,
        additional_inputs=additional_inputs,
        theme = gr.themes.Soft(),
        cache_examples=False,
        examples=[ [l.strip()] for l in open("exercices.md").readlines()],
        chatbot = gr.Chatbot(
            latex_delimiters=[
                {"left" : "$$", "right": "$$", "display": True },
                {"left" : "\\[", "right": "\\]", "display": True },
                {"left" : "\\(", "right": "\\)", "display": False },
                {"left": "$", "right": "$", "display": False }
                ]
            )
    )

demo.queue(max_size=100).launch(debug=True)