Spaces:
Sleeping
Sleeping
File size: 1,149 Bytes
5924313 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings # Updated import per deprecation notice
from langchain.schema import Document
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import CharacterTextSplitter
import re
# Path to folder containing PDFs
folder_path = "normativa"
pdf_files = [f for f in os.listdir(folder_path) if f.endswith(".pdf")]
# Load docs in folder and split text
text_splitter = CharacterTextSplitter(chunk_size = 500, chunk_overlap = 0)
documents = []
for pdf in pdf_files:
print("Loading file:", pdf)
loader = PyPDFLoader(os.path.join(folder_path, pdf))
docs = loader.load()
documents = text_splitter.split_documents(docs)
# Load the embedding model
embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
# Create a FAISS index with chunk-level embeddings
faiss_index = FAISS.from_documents(documents, embedding_model)
# Save (persist) the index to disk
faiss_index.save_local("faiss_index")
print("FAISS index built and saved successfully!")
|