File size: 4,809 Bytes
3d7abcf
 
 
d071597
 
3d7abcf
d071597
 
b838740
d071597
 
 
 
 
 
3d7abcf
 
 
b838740
d071597
3d7abcf
d071597
3d7abcf
 
 
d071597
3d7abcf
d071597
3d7abcf
 
 
 
 
b838740
 
 
 
d071597
3d7abcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d071597
 
 
 
 
 
 
 
 
 
 
 
3d7abcf
 
d071597
3d7abcf
d071597
 
3d7abcf
d071597
 
3d7abcf
d071597
 
3d7abcf
 
 
 
d071597
 
 
 
3d7abcf
 
 
 
d071597
 
 
 
3d7abcf
d071597
3d7abcf
 
 
 
 
d071597
 
 
3d7abcf
 
 
 
 
d071597
 
 
3d7abcf
 
 
 
 
d071597
 
 
3d7abcf
 
 
 
 
d071597
 
 
3d7abcf
 
 
 
 
d071597
3d7abcf
b838740
d071597
 
 
 
e2fef93
d071597
 
 
3d7abcf
d071597
 
3d7abcf
 
 
 
d071597
3d7abcf
 
 
 
 
d071597
3d7abcf
d071597
 
3d7abcf
dd19921
3d7abcf
dd19921
3d7abcf
 
d071597
3d7abcf
d071597
3d7abcf
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import requests
import re
import pandas as pd
from huggingface_hub import ModelCard


def pass_emoji(passed):
    if passed is True:
        passed = "โœ…"
    else:
        passed = "โŒ"
    return passed

api = HfApi()


def get_user_audio_classification_models(hf_username):
    """
    List the user's Audio Classification models
    :param hf_username: User HF username
    """

    models = api.list_models(author=hf_username, filter=["audio-classification"])
    user_model_ids = [x.modelId for x in models]
    models_gtzan = []

    for model in user_model_ids:
        meta = get_metadata(model)
        if meta is None:
            continue
        try:
          if meta["datasets"] == ['marsyas/gtzan']:
              models_gtzan.append(model)
        except: continue
    return models_gtzan


def get_metadata(model_id):
  """
  Get model metadata (contains evaluation data)
  :param model_id
  """
  try:
    readme_path = hf_hub_download(model_id, filename="README.md")
    return metadata_load(readme_path)
  except requests.exceptions.HTTPError:
    # 404 README.md not found
    return None


def extract_accuracy(model_card_content):
    """
    Extract the accuracy value from the models' model card
    :param model_card_content: model card content
    """
    accuracy_pattern = r"Accuracy: (\d+\.\d+)"
    match = re.search(accuracy_pattern, model_card_content)
    if match:
        accuracy = match.group(1)
        return float(accuracy)
    else:
        return None


def parse_metrics_accuracy(model_id):
  """
  Get model card and parse it
  :param model_id: model id
  """
  card = ModelCard.load(model_id)
  return extract_accuracy(card.content)

  
def calculate_best_acc_result(user_model_ids):
  """
  Calculate the best results of a unit
  :param user_model_ids: RL models of a user
  """

  best_result = -100
  best_model = ""

  for model in user_model_ids:
    meta = get_metadata(model)
    if meta is None:
      continue
    accuracy = parse_metrics_accuracy(model)
    if accuracy > best_result:
      best_result = accuracy
      best_model = meta['model-index'][0]["name"]
      
  return best_result, best_model


def certification(hf_username):
  results_certification = [
      {
          "unit": "Unit 4: Audio Classification",
          "task": "audio-classification",
          "baseline_metric": 0.87,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
      },
  {
          "unit": "Unit 5: TBD",
          "task": "TBD",          
          "baseline_metric": 0.99,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
  },
  {
          "unit": "Unit 6: TBD",
          "task": "TBD",
          "baseline_metric": 0.99,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
  },
  {
          "unit": "Unit 7: TBD",
          "task": "TBD",
          "baseline_metric": 0.99,
          "best_result": 0,
          "best_model_id": "",
          "passed_": False
  },
  ] 

  for unit in results_certification:
    unit["passed"] = pass_emoji(unit["passed_"])
    if unit["task"] == "audio-classification":
      user_models = get_user_audio_classification_models(hf_username)
      best_result, best_model_id = calculate_best_acc_result(user_models)
      unit["best_result"] = best_result
      unit["best_model_id"] = best_model_id
      if unit["best_result"] >= unit["baseline_metric"]: 
        unit["passed_"] = True
        unit["passed"] = pass_emoji(unit["passed_"])
    else: 
      # TBD for other units
      continue        
    
  print(results_certification)
 
  df = pd.DataFrame(results_certification)
  df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
  return df


with gr.Blocks() as demo:
    gr.Markdown(f"""
    # ๐Ÿ† Check your progress in the Audio Course ๐Ÿ†
    
    - To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
    - To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.

    To pass an assignment, your model's metric should be equal to or higher than the baseline metric.
    
    Make sure that you have uploaded your model(s) to Hub and type your Hugging Face Username here to check if you pass (in my case MariaK)
    """)
    
    hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
    check_progress_button = gr.Button(value="Check my progress")
    output = gr.components.Dataframe(value=certification(hf_username))    
    check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)

demo.launch()