Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import HfApi, hf_hub_download | |
from huggingface_hub.repocard import metadata_load | |
import pandas as pd | |
from utils import * | |
api = HfApi() | |
def get_user_models(hf_username, env_tag, lib_tag): | |
""" | |
List the Reinforcement Learning models | |
from user given environment and lib | |
:param hf_username: User HF username | |
:param env_tag: Environment tag | |
:param lib_tag: Library tag | |
""" | |
api = HfApi() | |
models = api.list_models(author=hf_username, filter=["reinforcement-learning", env_tag, lib_tag]) | |
user_model_ids = [x.modelId for x in models] | |
return user_model_ids | |
def get_user_sf_models(hf_username, env_tag, lib_tag): | |
api = HfApi() | |
models_sf = [] | |
models = api.list_models(author=hf_username, filter=["reinforcement-learning", lib_tag]) | |
user_model_ids = [x.modelId for x in models] | |
for model in user_model_ids: | |
meta = get_metadata(model) | |
if meta is None: | |
continue | |
result = meta["model-index"][0]["results"][0]["dataset"]["name"] | |
if result == env_tag: | |
models_sf.append(model) | |
return models_sf | |
def get_metadata(model_id): | |
""" | |
Get model metadata (contains evaluation data) | |
:param model_id | |
""" | |
try: | |
readme_path = hf_hub_download(model_id, filename="README.md") | |
return metadata_load(readme_path) | |
except requests.exceptions.HTTPError: | |
# 404 README.md not found | |
return None | |
def parse_metrics_accuracy(meta): | |
""" | |
Get model results and parse it | |
:param meta: model metadata | |
""" | |
if "model-index" not in meta: | |
return None | |
result = meta["model-index"][0]["results"] | |
metrics = result[0]["metrics"] | |
accuracy = metrics[0]["value"] | |
return accuracy | |
def parse_rewards(accuracy): | |
""" | |
Parse mean_reward and std_reward | |
:param accuracy: model results | |
""" | |
default_std = -1000 | |
default_reward= -1000 | |
if accuracy != None: | |
accuracy = str(accuracy) | |
parsed = accuracy.split(' +/- ') | |
if len(parsed)>1: | |
mean_reward = float(parsed[0]) | |
std_reward = float(parsed[1]) | |
elif len(parsed)==1: #only mean reward | |
mean_reward = float(parsed[0]) | |
std_reward = float(0) | |
else: | |
mean_reward = float(default_std) | |
std_reward = float(default_reward) | |
else: | |
mean_reward = float(default_std) | |
std_reward = float(default_reward) | |
return mean_reward, std_reward | |
def calculate_best_result(user_model_ids): | |
""" | |
Calculate the best results of a unit | |
best_result = mean_reward - std_reward | |
:param user_model_ids: RL models of a user | |
""" | |
best_result = -1000 | |
best_model_id = "" | |
for model in user_model_ids: | |
meta = get_metadata(model) | |
if meta is None: | |
continue | |
accuracy = parse_metrics_accuracy(meta) | |
mean_reward, std_reward = parse_rewards(accuracy) | |
result = mean_reward - std_reward | |
if result > best_result: | |
best_result = result | |
best_model_id = model | |
return best_result, best_model_id | |
def check_if_passed(model): | |
""" | |
Check if result >= baseline | |
to know if you pass | |
:param model: user model | |
""" | |
if model["best_result"] >= model["min_result"]: | |
model["passed_"] = True | |
def certification(hf_username): | |
results_certification = [ | |
{ | |
"unit": "Unit 1", | |
"env": "LunarLander-v2", | |
"library": "stable-baselines3", | |
"min_result": 200, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 2", | |
"env": "Taxi-v3", | |
"library": "q-learning", | |
"min_result": 4, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 3", | |
"env": "SpaceInvadersNoFrameskip-v4", | |
"library": "stable-baselines3", | |
"min_result": 200, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 4", | |
"env": "CartPole-v1", | |
"library": "reinforce", | |
"min_result": 350, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 4", | |
"env": "Pixelcopter-PLE-v0", | |
"library": "reinforce", | |
"min_result": 5, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 5", | |
"env": "ML-Agents-SnowballTarget", | |
"library": "ml-agents", | |
"min_result": -100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 5", | |
"env": "ML-Agents-Pyramids", | |
"library": "ml-agents", | |
"min_result": -100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 6", | |
"env": "AntBulletEnv-v0", | |
"library": "stable-baselines3", | |
"min_result": 650, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 6", | |
"env": "PandaReachDense-v2", | |
"library": "stable-baselines3", | |
"min_result": -3.5, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 7", | |
"env": "ML-Agents-SoccerTwos", | |
"library": "ml-agents", | |
"min_result": -100, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 8 PI", | |
"env": "LunarLander-v2", | |
"library": "deep-rl-course", | |
"min_result": -500, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
{ | |
"unit": "Unit 8 PII", | |
"env": "doom_health_gathering_supreme", | |
"library": "sample-factory", | |
"min_result": 5, | |
"best_result": 0, | |
"best_model_id": "", | |
"passed_": False | |
}, | |
] | |
for unit in results_certification: | |
if unit["unit"] != "Unit 8 PII": | |
# Get user model | |
user_models = get_user_models(hf_username, unit['env'], unit['library']) | |
# For sample factory vizdoom we don't have env tag for now | |
else: | |
user_models = get_user_sf_models(hf_username, unit['env'], unit['library']) | |
# Calculate the best result and get the best_model_id | |
best_result, best_model_id = calculate_best_result(user_models) | |
# Save best_result and best_model_id | |
unit["best_result"] = best_result | |
unit["best_model_id"] = make_clickable_model(best_model_id) | |
# Based on best_result do we pass the unit? | |
check_if_passed(unit) | |
unit["passed"] = pass_emoji(unit["passed_"]) | |
print(results_certification) | |
df = pd.DataFrame(results_certification) | |
df = df[['passed', 'unit', 'env', 'min_result', 'best_result', 'best_model_id']] | |
return df | |
with gr.Blocks() as demo: | |
gr.Markdown(f""" | |
# ๐ Check your progress in the Deep Reinforcement Learning Course ๐ | |
You can check your progress here. | |
- To get a certificate of completion, you must **pass 80% of the assignments before June 1st 2023**. | |
- To get an honors certificate, you must **pass 100% of the assignments before June 1st 2023**. | |
To pass an assignment your model result (mean_reward - std_reward) must be >= min_result | |
**When min_result = -100 it means that you just need to push a model to pass this hands-on. No need to reach a certain result.** | |
Just type your Hugging Face Username ๐ค (in my case ThomasSimonini) | |
""") | |
hf_username = gr.Textbox(placeholder="ThomasSimonini", label="Your Hugging Face Username") | |
#email = gr.Textbox(placeholder="[email protected]", label="Your Email (to receive your certificate)") | |
check_progress_button = gr.Button(value="Check my progress") | |
output = gr.components.Dataframe(value= certification(hf_username), headers=["Pass?", "Unit", "Environment", "Baseline", "Your best result", "Your best model id"], datatype=["markdown", "markdown", "markdown", "number", "number", "markdown", "bool"]) | |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output) | |
demo.launch() |