Spaces:
Runtime error
Runtime error
added u7 evaluation
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import requests
|
|
5 |
import re
|
6 |
import pandas as pd
|
7 |
from huggingface_hub import ModelCard
|
|
|
8 |
|
9 |
|
10 |
def pass_emoji(passed):
|
@@ -15,6 +16,9 @@ def pass_emoji(passed):
|
|
15 |
return passed
|
16 |
|
17 |
api = HfApi()
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
def get_user_models(hf_username, task):
|
@@ -37,9 +41,9 @@ def get_user_models(hf_username, task):
|
|
37 |
|
38 |
dataset_specific_models = []
|
39 |
|
40 |
-
if dataset == "":
|
41 |
return user_model_ids
|
42 |
-
else:
|
43 |
for model in user_model_ids:
|
44 |
meta = get_metadata(model)
|
45 |
if meta is None:
|
@@ -47,11 +51,10 @@ def get_user_models(hf_username, task):
|
|
47 |
try:
|
48 |
if meta["datasets"] == [dataset]:
|
49 |
dataset_specific_models.append(model)
|
50 |
-
except:
|
51 |
continue
|
52 |
return dataset_specific_models
|
53 |
|
54 |
-
|
55 |
def calculate_best_result(user_models, task):
|
56 |
"""
|
57 |
Calculate the best results of a unit for a given task
|
@@ -155,9 +158,9 @@ def certification(hf_username):
|
|
155 |
"passed_": False
|
156 |
},
|
157 |
{
|
158 |
-
"unit": "Unit 7:
|
159 |
-
"task": "
|
160 |
-
"baseline_metric": 0
|
161 |
"best_result": 0,
|
162 |
"best_model_id": "",
|
163 |
"passed_": False
|
@@ -191,13 +194,19 @@ def certification(hf_username):
|
|
191 |
case "text-to-speech":
|
192 |
try:
|
193 |
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
|
194 |
-
if user_tts_models:
|
195 |
unit["best_result"] = 0
|
196 |
unit["best_model_id"] = user_tts_models[0]
|
197 |
unit["passed_"] = True
|
198 |
unit["passed"] = pass_emoji(unit["passed_"])
|
199 |
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
case _:
|
202 |
print("Unknown task")
|
203 |
|
@@ -205,23 +214,25 @@ def certification(hf_username):
|
|
205 |
|
206 |
df = pd.DataFrame(results_certification)
|
207 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
208 |
-
return df
|
209 |
-
|
210 |
with gr.Blocks() as demo:
|
211 |
gr.Markdown(f"""
|
212 |
# π Check your progress in the Audio Course π
|
213 |
-
|
214 |
- To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
|
215 |
- To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
220 |
""")
|
221 |
-
|
222 |
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
|
223 |
check_progress_button = gr.Button(value="Check my progress")
|
224 |
-
output = gr.components.Dataframe(value=certification(hf_username))
|
225 |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
|
226 |
|
227 |
demo.launch()
|
|
|
5 |
import re
|
6 |
import pandas as pd
|
7 |
from huggingface_hub import ModelCard
|
8 |
+
import os
|
9 |
|
10 |
|
11 |
def pass_emoji(passed):
|
|
|
16 |
return passed
|
17 |
|
18 |
api = HfApi()
|
19 |
+
USERNAMES_DATASET_ID = "huggingface-course/audio-course-u7-hands-on"
|
20 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
21 |
+
U7_USERNAMES = hf_hub_download(USERNAMES_DATASET_ID, repo_type = "dataset", filename="usernames.csv", token=HF_TOKEN)
|
22 |
|
23 |
|
24 |
def get_user_models(hf_username, task):
|
|
|
41 |
|
42 |
dataset_specific_models = []
|
43 |
|
44 |
+
if dataset == "":
|
45 |
return user_model_ids
|
46 |
+
else:
|
47 |
for model in user_model_ids:
|
48 |
meta = get_metadata(model)
|
49 |
if meta is None:
|
|
|
51 |
try:
|
52 |
if meta["datasets"] == [dataset]:
|
53 |
dataset_specific_models.append(model)
|
54 |
+
except:
|
55 |
continue
|
56 |
return dataset_specific_models
|
57 |
|
|
|
58 |
def calculate_best_result(user_models, task):
|
59 |
"""
|
60 |
Calculate the best results of a unit for a given task
|
|
|
158 |
"passed_": False
|
159 |
},
|
160 |
{
|
161 |
+
"unit": "Unit 7: Audio applications",
|
162 |
+
"task": "demo",
|
163 |
+
"baseline_metric": 0,
|
164 |
"best_result": 0,
|
165 |
"best_model_id": "",
|
166 |
"passed_": False
|
|
|
194 |
case "text-to-speech":
|
195 |
try:
|
196 |
user_tts_models = get_user_models(hf_username, task = "text-to-speech")
|
197 |
+
if user_tts_models:
|
198 |
unit["best_result"] = 0
|
199 |
unit["best_model_id"] = user_tts_models[0]
|
200 |
unit["passed_"] = True
|
201 |
unit["passed"] = pass_emoji(unit["passed_"])
|
202 |
except: print("Either no relevant models found, or no metrics in the model card for automatic speech recognition")
|
203 |
+
case "demo":
|
204 |
+
u7_users = pd.read_csv(U7_USERNAMES)
|
205 |
+
if hf_username in u7_users['username']:
|
206 |
+
unit["best_result"] = 0
|
207 |
+
unit["best_model_id"] = "Demo check passed, no model id"
|
208 |
+
unit["passed_"] = True
|
209 |
+
unit["passed"] = pass_emoji(unit["passed_"])
|
210 |
case _:
|
211 |
print("Unknown task")
|
212 |
|
|
|
214 |
|
215 |
df = pd.DataFrame(results_certification)
|
216 |
df = df[['passed', 'unit', 'task', 'baseline_metric', 'best_result', 'best_model_id']]
|
217 |
+
return df
|
218 |
+
|
219 |
with gr.Blocks() as demo:
|
220 |
gr.Markdown(f"""
|
221 |
# π Check your progress in the Audio Course π
|
222 |
+
|
223 |
- To get a certificate of completion, you must **pass 3 out of 4 assignments before July 31st 2023**.
|
224 |
- To get an honors certificate, you must **pass 4 out of 4 assignments before July 31st 2023**.
|
225 |
|
226 |
+
For the assignments where you have to train a model, your model's metric should be equal to or better than the baseline metric.
|
227 |
+
For the Unit 7 assignment, first, check your demo with Unit 7 assessment Space: https://huggingface.co/spaces/huggingface-course/audio-course-u7-assessment
|
228 |
+
|
229 |
+
Make sure that you have uploaded your model(s) to Hub, and that your Unit 7 demo is public.
|
230 |
+
To check your progress, type your Hugging Face Username here (in my case MariaK)
|
231 |
""")
|
232 |
+
|
233 |
hf_username = gr.Textbox(placeholder="MariaK", label="Your Hugging Face Username")
|
234 |
check_progress_button = gr.Button(value="Check my progress")
|
235 |
+
output = gr.components.Dataframe(value=certification(hf_username))
|
236 |
check_progress_button.click(fn=certification, inputs=hf_username, outputs=output)
|
237 |
|
238 |
demo.launch()
|