model-memory-usage / src /hub_utils.py
muellerzr's picture
muellerzr HF staff
Big refactor
e44403a
raw
history blame
2.61 kB
# Utilities related to searching and posting on the Hub
import os
import webbrowser
from urllib.parse import urlparse
import pandas as pd
from huggingface_hub import HfApi
from .model_utils import calculate_memory, get_model
def extract_from_url(name: str):
"Checks if `name` is a URL, and if so converts it to a model name"
is_url = False
try:
result = urlparse(name)
is_url = all([result.scheme, result.netloc])
except Exception:
is_url = False
# Pass through if not a URL
if not is_url:
return name
else:
path = result.path
return path[1:]
def check_for_discussion(model_name: str):
"Checks if an automated discussion has been opened on the model by `model-sizer-bot`"
api = HfApi(token=os.environ.get("HUGGINGFACE_API_LOGIN", None))
discussions = list(api.get_repo_discussions(model_name))
return any(
discussion.title == "[AUTOMATED] Model Memory Requirements" and discussion.author == "model-sizer-bot"
for discussion in discussions
)
def report_results(model_name, library, access_token):
"Reports the results of a memory calculation to the model's discussion page, and opens a new tab to it afterwards"
model = get_model(model_name, library, access_token)
data = calculate_memory(model, ["fp32", "fp16", "int8", "int4"])
minimum = data[0]
data = pd.DataFrame(data).to_markdown(index=False)
post = f"""# Model Memory Requirements\n
You will need about {minimum[1]} VRAM to load this model for inference, and {minimum[3]} VRAM to train it using Adam.
These calculations were measured from the [Model Memory Utility Space](https://hf.co/spaces/hf-accelerate/model-memory-utility) on the Hub.
The minimum recommended vRAM needed for this model assumes using [Accelerate or `device_map="auto"`](https://huggingface.co/docs/accelerate/usage_guides/big_modeling) and is denoted by the size of the "largest layer".
When performing inference, expect to add up to an additional 20% to this, as found by [EleutherAI](https://blog.eleuther.ai/transformer-math/). More tests will be performed in the future to get a more accurate benchmark for each model.
When training with `Adam`, you can expect roughly 4x the reported results to be used. (1x for the model, 1x for the gradients, and 2x for the optimizer).
## Results:
{data}
"""
api = HfApi(token=os.environ.get("HUGGINGFACE_API_LOGIN", None))
discussion = api.create_discussion(model_name, "[AUTOMATED] Model Memory Requirements", description=post)
webbrowser.open_new_tab(discussion.url)