FixedF1 / app.py
John Graham Reynolds
a second workaround for deploying metrics to spaces
2488f8b
raw
history blame
1.34 kB
import evaluate
from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme
from fixed_f1 import FixedF1
# from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this
metric = FixedF1()
if isinstance(metric.features, list):
(feature_names, feature_types) = zip(*metric.features[0].items())
else:
(feature_names, feature_types) = zip(*metric.features.items())
gradio_input_types = infer_gradio_input_types(feature_types)
gradio_input_types = infer_gradio_input_types(feature_types)
def compute():
metric._compute()
import gradio as gr
space = gr.Interface(
fn=compute,
inputs=gr.Dataframe(
headers=feature_names,
col_count=len(feature_names),
row_count=1,
datatype=json_to_string_type(gradio_input_types),
),
outputs=gr.Textbox(label=metric.name),
description=(
metric.info.description + "\nIf this is a text-based metric, make sure to wrap your input in double quotes."
" Alternatively you can use a JSON-formatted list as input."
),
title=f"Metric: {metric.name}",
article=parse_readme("./README.md"),
# TODO: load test cases and use them to populate examples
# examples=[parse_test_cases(test_cases, feature_names, gradio_input_types)]
)
space.launch()