Spaces:
Sleeping
Sleeping
John Graham Reynolds
commited on
Commit
·
8a9fb11
1
Parent(s):
9a8c7c5
add a second example and clean up
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from fixed_f1 import FixedF1
|
|
8 |
from pathlib import Path
|
9 |
|
10 |
added_description = """
|
11 |
-
See the
|
12 |
[MarioBarbeque/CombinedEvaluationMetrics](https://huggingface.co/spaces/MarioBarbeque/CombinedEvaluationMetrics)
|
13 |
|
14 |
In the specific use case of the `F1Fixed` metric, one writes the following:\n
|
@@ -20,7 +20,7 @@ f1.add_batch(predictions=..., references=...)
|
|
20 |
f1.compute()
|
21 |
```\n
|
22 |
|
23 |
-
where the `average` parameter can be
|
24 |
or `binary` if there exist only two labels). \n
|
25 |
"""
|
26 |
|
@@ -33,7 +33,9 @@ else:
|
|
33 |
gradio_input_types = infer_gradio_input_types(feature_types)
|
34 |
|
35 |
local_path = Path(sys.path[0])
|
36 |
-
|
|
|
|
|
37 |
|
38 |
# configure this based on the input type, etc. for launch_gradio_widget
|
39 |
def compute(input_df: pd.DataFrame, method: str):
|
@@ -70,9 +72,13 @@ space = gr.Interface(
|
|
70 |
article=parse_readme(local_path / "README.md"),
|
71 |
examples=[
|
72 |
[
|
73 |
-
parse_test_cases(
|
74 |
"weighted"
|
75 |
],
|
|
|
|
|
|
|
|
|
76 |
],
|
77 |
cache_examples=False
|
78 |
)
|
|
|
8 |
from pathlib import Path
|
9 |
|
10 |
added_description = """
|
11 |
+
See the 🤗 Space showing off how to combine various metrics here:
|
12 |
[MarioBarbeque/CombinedEvaluationMetrics](https://huggingface.co/spaces/MarioBarbeque/CombinedEvaluationMetrics)
|
13 |
|
14 |
In the specific use case of the `F1Fixed` metric, one writes the following:\n
|
|
|
20 |
f1.compute()
|
21 |
```\n
|
22 |
|
23 |
+
where the `average` parameter can be chosen to configure the way f1 scores across labels are averaged. Acceptable values include `[None, 'micro', 'macro', 'weighted']` (
|
24 |
or `binary` if there exist only two labels). \n
|
25 |
"""
|
26 |
|
|
|
33 |
gradio_input_types = infer_gradio_input_types(feature_types)
|
34 |
|
35 |
local_path = Path(sys.path[0])
|
36 |
+
# configure these randomly using randint generator and feature names?
|
37 |
+
test_case_1 = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ]
|
38 |
+
test_case_2 = [ {"predictions":[9,8,7,6,5], "references":[7,8,9,6,5]} ]
|
39 |
|
40 |
# configure this based on the input type, etc. for launch_gradio_widget
|
41 |
def compute(input_df: pd.DataFrame, method: str):
|
|
|
72 |
article=parse_readme(local_path / "README.md"),
|
73 |
examples=[
|
74 |
[
|
75 |
+
parse_test_cases(test_case_1, feature_names, gradio_input_types)[0], # notice how we unpack this for when we fix launch_gradio_widget
|
76 |
"weighted"
|
77 |
],
|
78 |
+
[
|
79 |
+
parse_test_cases(test_case_2, feature_names, gradio_input_types)[0],
|
80 |
+
"micro"
|
81 |
+
],
|
82 |
],
|
83 |
cache_examples=False
|
84 |
)
|