John Graham Reynolds commited on
Commit
a1adbdd
·
1 Parent(s): a51a7fa

add Space module

Browse files
Files changed (1) hide show
  1. app.py +82 -3
app.py CHANGED
@@ -1,8 +1,87 @@
 
1
  import gradio as gr
 
 
 
 
 
 
2
 
 
 
 
 
3
 
4
- def greet(name):
5
- return 'Hello, ' + name + '!'
6
 
 
 
7
 
8
- gr.Interface(fn=greet, inputs='text', outputs='text').launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
  import gradio as gr
3
+ import pandas as pd
4
+ import evaluate
5
+ from evaluate.utils import infer_gradio_input_types, json_to_string_type, parse_readme, parse_test_cases
6
+ # from evaluate.utils import launch_gradio_widget # using this directly is erroneous - lets fix this
7
+ from fixed_recall import FixedRecall
8
+ from pathlib import Path
9
 
10
+ added_description = """
11
+ See the 🤗 Space showing off how to combine various metrics:
12
+ [MarioBarbeque/CombinedEvaluationMetrics🪲](https://huggingface.co/spaces/MarioBarbeque/CombinedEvaluationMetrics). This collected fix thereby circumnavigates the
13
+ original, longstanding issue found [here](https://github.com/huggingface/evaluate/issues/234). We look forward to fixing this in a PR soon.
14
 
15
+ In the specific use case of the `FixedRecall` metric, one writes the following:\n
 
16
 
17
+ ```python
18
+ recall = FixedRecall(average=...)
19
 
20
+ recall.add_batch(predictions=..., references=...)
21
+ recall.compute()
22
+ ```\n
23
+
24
+ where the `average` parameter can be chosen to configure the way recall scores across labels are averaged. Acceptable values include `[None, 'micro', 'macro', 'weighted']` (
25
+ or `binary` if there exist only two labels). \n
26
+ """
27
+
28
+ metric = FixedRecall()
29
+
30
+ if isinstance(metric.features, list):
31
+ (feature_names, feature_types) = zip(*metric.features[0].items())
32
+ else:
33
+ (feature_names, feature_types) = zip(*metric.features.items())
34
+ gradio_input_types = infer_gradio_input_types(feature_types)
35
+
36
+ local_path = Path(sys.path[0])
37
+ # configure these randomly using randint generator and feature names?
38
+ test_case_1 = [ {"predictions":[1,2,3,4,5], "references":[1,2,5,4,3]} ]
39
+ test_case_2 = [ {"predictions":[9,8,7,6,5], "references":[7,8,9,6,5]} ]
40
+
41
+ # configure this based on the input type, etc. for launch_gradio_widget
42
+ def compute(input_df: pd.DataFrame, method: str):
43
+
44
+ metric = FixedRecall(average=method if method != "None" else None)
45
+
46
+ cols = [col for col in input_df.columns]
47
+ predicted = [int(num) for num in input_df[cols[0]].to_list()]
48
+ references = [int(num) for num in input_df[cols[1]].to_list()]
49
+
50
+ metric.add_batch(predictions=predicted, references=references)
51
+ outputs = metric.compute()
52
+
53
+ return f"The recall score for these predictions is: \n {outputs}"
54
+
55
+ space = gr.Interface(
56
+ fn=compute,
57
+ inputs=[
58
+ gr.Dataframe(
59
+ headers=feature_names,
60
+ col_count=len(feature_names),
61
+ row_count=5,
62
+ datatype=json_to_string_type(gradio_input_types),
63
+ ),
64
+ gr.Radio(
65
+ ["weighted", "micro", "macro", "None", "binary"],
66
+ label="Averaging Method",
67
+ info="Method for averaging the recall score across labels. \n `binary` only works if you are evaluating a binary classification model."
68
+ )
69
+ ],
70
+ outputs=gr.Textbox(label=metric.name),
71
+ description=metric.info.description + added_description,
72
+ title="FixedRecall Metric", # think about how to generalize this with the launch_gradio_widget - it seems fine as is really
73
+ article=parse_readme(local_path / "README.md"),
74
+ examples=[
75
+ [
76
+ parse_test_cases(test_case_1, feature_names, gradio_input_types)[0], # notice how we unpack this for when we fix launch_gradio_widget
77
+ "weighted"
78
+ ],
79
+ [
80
+ parse_test_cases(test_case_2, feature_names, gradio_input_types)[0],
81
+ "micro"
82
+ ],
83
+ ],
84
+ cache_examples=False
85
+ )
86
+
87
+ space.launch()