Spaces:
Sleeping
Sleeping
File size: 10,838 Bytes
d43b410 f45b463 8bb66b9 f45b463 a2a0721 d43b410 0e29746 d43b410 a2a0721 d43b410 0e29746 d43b410 a2a0721 f45b463 d43b410 f15be1a f45b463 d43b410 a2a0721 0219321 fb9ed3a f45b463 1543f99 4abddf8 f45b463 d43b410 f45b463 d43b410 f45b463 25b1dfe a2a0721 d43b410 4abddf8 6e06674 d43b410 f45b463 8bb66b9 f45b463 6b9eb29 f45b463 8bb66b9 f45b463 4abddf8 8bb66b9 f45b463 2828740 f45b463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import threading
import streamlit as st
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_databricks.vectorstores import DatabricksVectorSearch
from itertools import tee
DATABRICKS_HOST = os.environ.get("DATABRICKS_HOST")
DATABRICKS_TOKEN = os.environ.get("DATABRICKS_TOKEN")
VS_ENDPOINT_NAME = os.environ.get("VS_ENDPOINT_NAME")
VS_INDEX_NAME = os.environ.get("VS_INDEX_NAME")
if DATABRICKS_HOST is None:
raise ValueError("DATABRICKS_HOST environment variable must be set")
if DATABRICKS_TOKEN is None:
raise ValueError("DATABRICKS_API_TOKEN environment variable must be set")
MODEL_AVATAR_URL= "./VU.jpeg"
# MSG_MAX_TURNS_EXCEEDED = f"Sorry! The Vanderbilt AI assistant playground is limited to {MAX_CHAT_TURNS} turns. Click the 'Clear Chat' button or refresh the page to start a new conversation."
# MSG_CLIPPED_AT_MAX_OUT_TOKENS = "Reached maximum output tokens for DBRX Playground"
EXAMPLE_PROMPTS = [
"Tell me about maximum out-of-pocket costs in healthcare.",
"Write a haiku about Nashville, Tennessee.",
"How is a data lake used at Vanderbilt University Medical Center?",
"In a table, what are some of the greatest hurdles to healthcare in the United States?",
"What does EDW stand for in the context of Vanderbilt University Medical Center?",
"Code a sql statement that can query a database named 'VUMC'.",
"Write a short story about a country concert in Nashville, Tennessee.",
]
TITLE = "Vanderbilt AI Assistant"
DESCRIPTION="""Welcome to the first generation Vanderbilt AI assistant! \n
This AI assistant is built atop the Databricks DBRX large language model
and is augmented with additional organization-specific knowledge. Specifically, it has been preliminarily augmented with knowledge of Vanderbilt University Medical Center
terms like **Data Lake**, **EDW** (Enterprise Data Warehouse), **HCERA** (Health Care and Education Reconciliation Act), and **thousands more!** The model has **no access to PHI**.
Try querying the model with any of the example prompts below for a simple introduction to both Vanderbilt-specific and general knowledge queries. The purpose of this
model is to allow VUMC employees access to an intelligent assistant that improves and expedites VUMC work. \n
Feedback and ideas are very welcome! Please provide any feedback, ideas, or issues to the email: **[email protected]**.
We hope to gradually improve this AI assistant to create a large-scale, all-inclusive tool to compliment the work of all VUMC staff."""
GENERAL_ERROR_MSG = "An error occurred. Please refresh the page to start a new conversation."
# @st.cache_resource
# def get_global_semaphore():
# return threading.BoundedSemaphore(QUEUE_SIZE)
# global_semaphore = get_global_semaphore()
st.set_page_config(layout="wide")
# # To prevent streaming to fast, chunk the output into TOKEN_CHUNK_SIZE chunks
TOKEN_CHUNK_SIZE = 1
# if TOKEN_CHUNK_SIZE_ENV is not None:
# TOKEN_CHUNK_SIZE = int(TOKEN_CHUNK_SIZE_ENV)
st.title(TITLE)
# st.image("sunrise.jpg", caption="Sunrise by the mountains") # add a Vanderbilt related picture to the head of our Space!
st.markdown(DESCRIPTION)
st.markdown("\n")
# use this to format later
with open("./style.css") as css:
st.markdown( f'<style>{css.read()}</style>' , unsafe_allow_html= True)
if "messages" not in st.session_state:
st.session_state["messages"] = []
def clear_chat_history():
st.session_state["messages"] = []
st.button('Clear Chat', on_click=clear_chat_history)
def last_role_is_user():
return len(st.session_state["messages"]) > 0 and st.session_state["messages"][-1]["role"] == "user"
def get_system_prompt():
return ""
# ** working logic for querying glossary embeddings
# Same embedding model we used to create embeddings of terms
# make sure we cache this so that it doesnt redownload each time, hindering Space start time if sleeping
# try adding this st caching decorator to ensure the embeddings class gets cached after downloading the entirety of the model
# does this cache to the given folder though? It does appear to populate the folder as expected after being run
@st.cache_resource # will this work here? https://docs.streamlit.io/develop/concepts/architecture/caching
def load_embedding_model():
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en", cache_folder="./langchain_cache/")
return embeddings
embeddings = load_embedding_model()
# instantiate the vector store for similarity search in our chain
# need to make this a function and decorate it with @st.experimental_memo as above?
# We are only calling this initially when the Space starts. Can we expedite this process for users when opening up this Space?
# @st.cache_data # TODO add this in
vector_store = DatabricksVectorSearch(
endpoint=VS_ENDPOINT_NAME,
index_name=VS_INDEX_NAME,
embedding=embeddings,
text_column="name",
columns=["name", "description"],
)
def text_stream(stream):
for chunk in stream:
if chunk["content"] is not None:
yield chunk["content"]
def get_stream_warning_error(stream):
error = None
warning = None
# for chunk in stream:
# if chunk["error"] is not None:
# error = chunk["error"]
# if chunk["warning"] is not None:
# warning = chunk["warning"]
return warning, error
# @retry(wait=wait_random_exponential(min=0.5, max=2), stop=stop_after_attempt(3))
def chat_api_call(history):
# *** original code for instantiating the DBRX model through the OpenAI client *** skip this and introduce our chain eventually
# extra_body = {}
# if SAFETY_FILTER:
# extra_body["enable_safety_filter"] = SAFETY_FILTER
# chat_completion = client.chat.completions.create(
# messages=[
# {"role": m["role"], "content": m["content"]}
# for m in history
# ],
# model="databricks-dbrx-instruct",
# stream=True,
# max_tokens=MAX_TOKENS,
# temperature=0.7,
# extra_body= extra_body
# )
# ** TODO update this next to take and do similarity search on user input!
st.write(history)
search_result = vector_store.similarity_search(query="Tell me about what a data lake is.", k=5)
chat_completion = search_result # TODO update this after we implement our chain
return chat_completion
def write_response():
stream = chat_completion(st.session_state["messages"])
content_stream, error_stream = tee(stream)
response = st.write_stream(text_stream(content_stream))
stream_warning, stream_error = get_stream_warning_error(error_stream)
if stream_warning is not None:
st.warning(stream_warning,icon="β οΈ")
if stream_error is not None:
st.error(stream_error,icon="π¨")
# if there was an error, a list will be returned instead of a string: https://docs.streamlit.io/library/api-reference/write-magic/st.write_stream
if isinstance(response, list):
response = None
return response, stream_warning, stream_error
def chat_completion(messages):
history_dbrx_format = [
{"role": "system", "content": get_system_prompt()}
]
history_dbrx_format = history_dbrx_format + messages
# if (len(history_dbrx_format)-1)//2 >= MAX_CHAT_TURNS:
# yield {"content": None, "error": MSG_MAX_TURNS_EXCEEDED, "warning": None}
# return
chat_completion = None
error = None
# *** original code for querying DBRX through the OpenAI cleint for chat completion
# wait to be in queue
# with global_semaphore:
# try:
# chat_completion = chat_api_call(history_dbrx_format)
# except Exception as e:
# error = e
chat_completion = chat_api_call(history_dbrx_format)
if error is not None:
yield {"content": None, "error": GENERAL_ERROR_MSG, "warning": None}
print(error)
return
max_token_warning = None
partial_message = ""
chunk_counter = 0
for chunk in chat_completion:
# if chunk.choices[0].delta.content is not None:
if chunk.page_content is not None:
chunk_counter += 1
# partial_message += chunk.choices[0].delta.content
partial_message += f"* {chunk.page_content} [{chunk.metadata}]"
if chunk_counter % TOKEN_CHUNK_SIZE == 0:
chunk_counter = 0
yield {"content": partial_message, "error": None, "warning": None}
partial_message = ""
# if chunk.choices[0].finish_reason == "length":
# max_token_warning = MSG_CLIPPED_AT_MAX_OUT_TOKENS
yield {"content": partial_message, "error": None, "warning": max_token_warning}
# if assistant is the last message, we need to prompt the user
# if user is the last message, we need to retry the assistant.
def handle_user_input(user_input):
with history:
response, stream_warning, stream_error = [None, None, None]
if last_role_is_user():
# retry the assistant if the user tries to send a new message
with st.chat_message("assistant", avatar=MODEL_AVATAR_URL):
response, stream_warning, stream_error = write_response()
else:
st.session_state["messages"].append({"role": "user", "content": user_input, "warning": None, "error": None})
with st.chat_message("user"):
st.markdown(user_input)
stream = chat_completion(st.session_state["messages"])
with st.chat_message("assistant", avatar=MODEL_AVATAR_URL):
response, stream_warning, stream_error = write_response()
st.session_state["messages"].append({"role": "assistant", "content": response, "warning": stream_warning, "error": stream_error})
main = st.container()
with main:
history = st.container(height=400)
with history:
for message in st.session_state["messages"]:
avatar = "π§βπ»"
if message["role"] == "assistant":
avatar = MODEL_AVATAR_URL
with st.chat_message(message["role"],avatar=avatar):
if message["content"] is not None:
st.markdown(message["content"])
# if message["error"] is not None:
# st.error(message["error"],icon="π¨")
# if message["warning"] is not None:
# st.warning(message["warning"],icon="β οΈ")
if prompt := st.chat_input("Type a message!", max_chars=1000):
handle_user_input(prompt)
st.markdown("\n") #add some space for iphone users
with st.sidebar:
with st.container():
st.title("Examples")
for prompt in EXAMPLE_PROMPTS:
st.button(prompt, args=(prompt,), on_click=handle_user_input) |