Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the Hugging Face model
|
5 |
+
emotion_classifier = pipeline("text-classification", model="SamLowe/roberta-base-go_emotions", return_all_scores=True)
|
6 |
+
|
7 |
+
# Define a function to process the transcribed text with the emotion model
|
8 |
+
def transcribe_and_analyze(audio):
|
9 |
+
# Load Whisper for transcription
|
10 |
+
whisper = gr.load("models/openai/whisper-large-v3-turbo")
|
11 |
+
transcription = whisper(audio) # Transcribe audio
|
12 |
+
# Analyze emotions in the transcribed text
|
13 |
+
emotions = emotion_classifier(transcription["text"])
|
14 |
+
return transcription["text"], emotions
|
15 |
+
|
16 |
+
# Create Gradio interface
|
17 |
+
interface = gr.Interface(
|
18 |
+
fn=transcribe_and_analyze,
|
19 |
+
inputs=gr.Audio(source="microphone", type="filepath"), # Accept audio input
|
20 |
+
outputs=[
|
21 |
+
gr.Textbox(label="Transcription"), # Show the transcription
|
22 |
+
gr.JSON(label="Emotion Analysis") # Show the emotion analysis
|
23 |
+
],
|
24 |
+
title="Audio to Emotion Analysis"
|
25 |
+
)
|
26 |
+
|
27 |
+
# Launch the Gradio app
|
28 |
+
interface.launch()
|