Mark0047 commited on
Commit
daebcf8
·
verified ·
1 Parent(s): de9f399

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -1,6 +1,6 @@
1
  import gradio as gr
2
  from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
3
- import torch
4
  import soundfile as sf
5
 
6
  # Load Whisper model and processor
@@ -15,8 +15,13 @@ def transcribe_and_analyze(audio_path):
15
  # Load audio from the provided file
16
  audio, sample_rate = sf.read(audio_path)
17
 
 
 
 
 
 
18
  # Process audio with Whisper
19
- input_features = processor(audio, sampling_rate=sample_rate, return_tensors="pt").input_features
20
  predicted_ids = model.generate(input_features)
21
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
22
 
 
1
  import gradio as gr
2
  from transformers import pipeline, WhisperProcessor, WhisperForConditionalGeneration
3
+ import torchaudio
4
  import soundfile as sf
5
 
6
  # Load Whisper model and processor
 
15
  # Load audio from the provided file
16
  audio, sample_rate = sf.read(audio_path)
17
 
18
+ # Resample audio to 16000 Hz if necessary
19
+ if sample_rate != 16000:
20
+ audio_tensor = torchaudio.functional.resample(torch.tensor(audio), orig_freq=sample_rate, new_freq=16000)
21
+ audio = audio_tensor.numpy() # Convert back to numpy array
22
+
23
  # Process audio with Whisper
24
+ input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
25
  predicted_ids = model.generate(input_features)
26
  transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
27