Spaces:
Runtime error
Runtime error
import torch | |
from transformers import AutoTokenizer, LlamaForCausalLM, BitsAndBytesConfig | |
from transformers.generation.stopping_criteria import StoppingCriteria, StoppingCriteriaList | |
from peft import PeftModel | |
import gradio as gr | |
import os | |
# Add this new class for custom stopping criteria | |
class SentenceEndingCriteria(StoppingCriteria): | |
def __init__(self, tokenizer, end_tokens): | |
self.tokenizer = tokenizer | |
self.end_tokens = end_tokens | |
def __call__(self, input_ids, scores, **kwargs): | |
last_token = input_ids[0][-1] | |
return last_token in self.end_tokens | |
def load_model(): | |
model_path = "Cioni223/mymodel" | |
token = os.environ.get("HUGGINGFACE_TOKEN") # Ensure you set this environment variable | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_path, | |
use_fast=False, | |
padding_side="left", | |
model_max_length=4096, | |
token=token | |
) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = LlamaForCausalLM.from_pretrained( | |
model_path, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
quantization_config=BitsAndBytesConfig(load_in_8bit=True), | |
use_auth_token=token | |
) | |
return model, tokenizer | |
def format_chat_history(history): | |
formatted_history = "" | |
for user_msg, assistant_msg in history: | |
if user_msg: | |
formatted_history += f"<|start_header_id|>user<|end_header_id|>{user_msg}<|eot_id|>\n" | |
if assistant_msg: | |
formatted_history += f"<|start_header_id|>assistant<|end_header_id|>{assistant_msg}<|eot_id|>\n" | |
return formatted_history | |
def chat_response(message, history): | |
# Format the prompt with system message and chat history | |
system_prompt = """<|start_header_id|>system<|end_header_id|>You are Fred, a virtual admissions coordinator for Haven Health Management, a mental health and substance abuse treatment facility. Your role is to respond conversationally and empathetically, like a human agent, using 1-2 sentences per response while guiding the conversation effectively. Your primary goal is to understand the caller's reason for reaching out, gather their medical history, and obtain their insurance details, ensuring the conversation feels natural and supportive. Once all the information is gathered politely end the conversation and if the user is qualified tell the user a live agent will reach out soon. Note: Medicaid is not accepted as insurance.<|eot_id|>""" | |
chat_history = format_chat_history(history) | |
formatted_prompt = f"""{system_prompt} | |
{chat_history}<|start_header_id|>user<|end_header_id|>{message}<|eot_id|> | |
<|start_header_id|>assistant<|end_header_id|>""" | |
inputs = tokenizer( | |
formatted_prompt, | |
return_tensors="pt", | |
padding=True | |
).to(model.device) | |
# Create stopping criteria | |
end_tokens = [ | |
tokenizer.encode(".")[0], | |
tokenizer.encode("!")[0], | |
tokenizer.encode("?")[0], | |
tokenizer.encode("<|eot_id|>", add_special_tokens=False)[0] | |
] | |
stopping_criteria = StoppingCriteriaList([ | |
SentenceEndingCriteria(tokenizer, end_tokens) | |
]) | |
# Modified generation parameters | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=300, | |
temperature=0.4, | |
do_sample=True, | |
top_p=0.95, | |
top_k=50, | |
repetition_penalty=1.2, | |
no_repeat_ngram_size=3, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.encode("<|eot_id|>", add_special_tokens=False)[0], | |
stopping_criteria=stopping_criteria | |
) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=False) | |
try: | |
assistant_parts = response.split("<|start_header_id|>assistant<|end_header_id|>") | |
last_response = assistant_parts[-1].split("<|eot_id|>")[0].strip() | |
# Ensure response ends with proper punctuation | |
if not any(last_response.rstrip().endswith(punct) for punct in ['.', '!', '?']): | |
# Find the last complete sentence | |
sentences = last_response.split('.') | |
if len(sentences) > 1: | |
last_response = '.'.join(sentences[:-1]) + '.' | |
return last_response | |
except: | |
return "I apologize, but I couldn't generate a proper response. Please try again." | |
# Define a Gradio Interface for the API | |
api_interface = gr.Interface( | |
fn=chat_response, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."), | |
outputs=gr.Textbox(label="Response"), | |
title="Admissions Agent API", | |
description="API endpoint for interacting with the AI-powered admissions coordinator." | |
) | |
# Load model and tokenizer | |
print("Loading model...") | |
model, tokenizer = load_model() | |
print("Model loaded!") | |
# Create Gradio interface with chat | |
demo = gr.ChatInterface( | |
fn=chat_response, | |
title="Admissions Agent Assistant", | |
description="Chat with an AI-powered admissions coordinator. The agent will maintain context of your conversation.", | |
examples=[ | |
"I need help with addiction treatment", | |
"What insurance do you accept?", | |
"How long are your treatment programs?", | |
"Can you help with mental health issues?" | |
] | |
) | |
if __name__ == "__main__": | |
# Launch both the chat interface and the API interface | |
demo.launch() | |
api_interface.launch(share=True) # This will expose the API endpoint |