File size: 43,744 Bytes
54853c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# This is fraud Detection Application\n",
    "### This model uses Random Forest Algorithim for Fraud Classification\n",
    "#### This model utilizes dataset from kaggle"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### This Model is comprised of the following steps:\n",
    "\n",
    "1. Library Imports\n",
    "2. Data Loading\n",
    "3. Data Preprocessing\n",
    "4. Model Training\n",
    "5. Class Imbalance Handling\n",
    "6. Model Export"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Library Imports"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import seaborn as sns\n",
    "import matplotlib.pyplot as plt\n",
    "from datasets import load_dataset\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "from sklearn.ensemble import RandomForestClassifier\n",
    "from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, ConfusionMatrixDisplay\n",
    "from sklearn.model_selection import train_test_split\n",
    "import joblib"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data Load"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset = load_dataset(\"Nooha/cc_fraud_detection_dataset\")\n",
    "df = pd.DataFrame(dataset['train'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset Preview:\n",
      "           ssn            cc_num    first   last gender      city state  \\\n",
      "0  367-85-9826  4361337605230458  Kristie  Davis      F  Chandler    OK   \n",
      "1  367-85-9826  4361337605230458  Kristie  Davis      F  Chandler    OK   \n",
      "2  367-85-9826  4361337605230458  Kristie  Davis      F  Chandler    OK   \n",
      "3  367-85-9826  4361337605230458  Kristie  Davis      F  Chandler    OK   \n",
      "4  367-85-9826  4361337605230458  Kristie  Davis      F  Chandler    OK   \n",
      "\n",
      "     zip  city_pop                     job         dob      acct_num  \\\n",
      "0  74834      7590  Chief Strategy Officer  1987-06-12  349734538563   \n",
      "1  74834      7590  Chief Strategy Officer  1987-06-12  349734538563   \n",
      "2  74834      7590  Chief Strategy Officer  1987-06-12  349734538563   \n",
      "3  74834      7590  Chief Strategy Officer  1987-06-12  349734538563   \n",
      "4  74834      7590  Chief Strategy Officer  1987-06-12  349734538563   \n",
      "\n",
      "                          trans_num  trans_date trans_time   unix_time  \\\n",
      "0  c036244703adb9d5392f4027d9d4b38d  2021-07-31   02:30:01  1627678801   \n",
      "1  42f000b0b3b0ef534e5b8ef9ec1db13a  2021-08-01   22:37:41  1627837661   \n",
      "2  543037b1baf088961e58d00b705f4bcc  2021-08-01   23:02:09  1627839129   \n",
      "3  00a4e08643edebf9277c2967676f6a26  2021-08-01   22:27:24  1627837044   \n",
      "4  492c4412815306718f686fc5b459a285  2021-12-02   02:28:51  1638392331   \n",
      "\n",
      "         category     amt  is_fraud                merchant  \n",
      "0     grocery_pos  337.54         1           fraud_Kovacek  \n",
      "1   personal_care   21.13         1           fraud_Bradtke  \n",
      "2   personal_care   22.61         1     fraud_Kozey-Kuhlman  \n",
      "3  health_fitness   17.32         1             fraud_Hills  \n",
      "4        misc_pos   75.82         0  fraud_Kemmer-Buckridge  \n"
     ]
    }
   ],
   "source": [
    "# Display the first few rows of the dataset\n",
    "print(\"Dataset Preview:\")\n",
    "print(df.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Dataset Information:\n",
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 2646694 entries, 0 to 2646693\n",
      "Data columns (total 20 columns):\n",
      " #   Column      Dtype  \n",
      "---  ------      -----  \n",
      " 0   ssn         object \n",
      " 1   cc_num      int64  \n",
      " 2   first       object \n",
      " 3   last        object \n",
      " 4   gender      object \n",
      " 5   city        object \n",
      " 6   state       object \n",
      " 7   zip         int64  \n",
      " 8   city_pop    int64  \n",
      " 9   job         object \n",
      " 10  dob         object \n",
      " 11  acct_num    int64  \n",
      " 12  trans_num   object \n",
      " 13  trans_date  object \n",
      " 14  trans_time  object \n",
      " 15  unix_time   int64  \n",
      " 16  category    object \n",
      " 17  amt         float64\n",
      " 18  is_fraud    int64  \n",
      " 19  merchant    object \n",
      "dtypes: float64(1), int64(6), object(13)\n",
      "memory usage: 403.9+ MB\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "# Display dataset information\n",
    "print(\"\\nDataset Information:\")\n",
    "print(df.info())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data Preprocessing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Missing Values:\n",
      "ssn           0\n",
      "cc_num        0\n",
      "first         0\n",
      "last          0\n",
      "gender        0\n",
      "city          0\n",
      "state         0\n",
      "zip           0\n",
      "city_pop      0\n",
      "job           0\n",
      "dob           0\n",
      "acct_num      0\n",
      "trans_num     0\n",
      "trans_date    0\n",
      "trans_time    0\n",
      "unix_time     0\n",
      "category      0\n",
      "amt           0\n",
      "is_fraud      0\n",
      "merchant      0\n",
      "dtype: int64\n"
     ]
    }
   ],
   "source": [
    "# Check for missing values\n",
    "print(\"Missing Values:\")\n",
    "print(df.isnull().sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Drop non-numeric columns (if any)\n",
    "numeric_df = df.select_dtypes(include=['number'])\n",
    "\n",
    "# Ensure the target column 'is_fraud' is included\n",
    "if 'is_fraud' not in numeric_df.columns:\n",
    "    numeric_df['is_fraud'] = df['is_fraud']\n",
    "\n",
    "# Separate features and target\n",
    "X = numeric_df.drop(columns=['is_fraud'])\n",
    "y = numeric_df['is_fraud']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Shape of Features (X): (2646694, 6)\n",
      "Shape of Target (y): (2646694,)\n"
     ]
    }
   ],
   "source": [
    "# Display the shape of the dataset\n",
    "print(\"\\nShape of Features (X):\", X.shape)\n",
    "print(\"Shape of Target (y):\", y.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Feature Scaling"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Scaled Features:\n",
      "[[-0.31022966  0.75530067 -0.4848491  -0.49208358 -1.12618154  1.60692892]\n",
      " [-0.31022966  0.75530067 -0.4848491  -0.49208358 -1.12037479 -0.29432497]\n",
      " [-0.31022966  0.75530067 -0.4848491  -0.49208358 -1.12032113 -0.2854319 ]\n",
      " [-0.31022966  0.75530067 -0.4848491  -0.49208358 -1.12039735 -0.31721862]\n",
      " [-0.31022966  0.75530067 -0.4848491  -0.49208358 -0.73457409  0.03429794]]\n"
     ]
    }
   ],
   "source": [
    "# Initialize the scaler\n",
    "scaler = StandardScaler()\n",
    "\n",
    "# Scale the features\n",
    "X_scaled = scaler.fit_transform(X)\n",
    "\n",
    "print(\"Scaled Features:\")\n",
    "print(X_scaled[:5])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Data Splitting"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Split the dataset\n",
    "X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Shape of X_train: (2117355, 6)\n",
      "Shape of X_test: (529339, 6)\n",
      "Shape of y_train: (2117355,)\n",
      "Shape of y_test: (529339,)\n"
     ]
    }
   ],
   "source": [
    "# Display the shape of the splits\n",
    "print(\"Shape of X_train:\", X_train.shape)\n",
    "print(\"Shape of X_test:\", X_test.shape)\n",
    "print(\"Shape of y_train:\", y_train.shape)\n",
    "print(\"Shape of y_test:\", y_test.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Training"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model training completed!\n"
     ]
    }
   ],
   "source": [
    "# Initialize the Random Forest model\n",
    "model = RandomForestClassifier(\n",
    "    n_estimators=100,\n",
    "    max_depth=10,\n",
    "    random_state=42,\n",
    "    class_weight='balanced'  # Handle class imbalance\n",
    ")\n",
    "\n",
    "# Train the model\n",
    "model.fit(X_train, y_train)\n",
    "\n",
    "# Display training completion message\n",
    "print(\"Model training completed!\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Evaluation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Make predictions\n",
    "y_pred = model.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Accuracy: 0.9615\n"
     ]
    }
   ],
   "source": [
    "# Display accuracy\n",
    "accuracy = accuracy_score(y_test, y_pred)\n",
    "print(f\"Accuracy: {accuracy:.4f}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Classification Report:\n",
      "              precision    recall  f1-score   support\n",
      "\n",
      "   Not Fraud       1.00      0.96      0.98    527441\n",
      "       Fraud       0.07      0.82      0.13      1898\n",
      "\n",
      "    accuracy                           0.96    529339\n",
      "   macro avg       0.54      0.89      0.56    529339\n",
      "weighted avg       1.00      0.96      0.98    529339\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# Display classification report\n",
    "print(\"\\nClassification Report:\")\n",
    "print(classification_report(y_test, y_pred, target_names=['Not Fraud', 'Fraud']))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWRpJREFUeJzt3XlYVGX/BvB7BpwBgQFFFhEEFEVQlERDMrdEsTA19OeaglupuIF7uSC5pam4U1mipq9LpqWkhpqaSi4o5Yp7mIC4wQjKNpzfH8bJCZQZGQYd7k/XuV7mOc95znfmRfjybEciCIIAIiIiItKYtKIDICIiInrdMIEiIiIi0hITKCIiIiItMYEiIiIi0hITKCIiIiItMYEiIiIi0hITKCIiIiItMYEiIiIi0hITKCIiIiItMYEiqsSuXLmCjh07wtLSEhKJBDt27NBp+zdv3oREIkFMTIxO232dtW3bFm3btq3oMIiojJhAEVWwa9eu4eOPP0adOnVgYmIChUKBli1bYsmSJXjy5Em53js4OBhnz57F7NmzsX79ejRr1qxc76dPISEhkEgkUCgUJX6OV65cgUQigUQiwRdffKF1+ykpKYiIiEBiYqIOoiWi141xRQdAVJnFxsbi//7v/yCXyzFgwAA0atQIeXl5OHLkCCZMmIDz58/jq6++Kpd7P3nyBPHx8fj0008xcuTIcrmHs7Mznjx5gipVqpRL+6UxNjbG48ePsXPnTvTs2VPt3IYNG2BiYoKcnJyXajslJQUzZ86Ei4sLvL29Nb7ul19+ean7EdGrhQkUUQW5ceMGevfuDWdnZxw4cAA1a9YUz4WGhuLq1auIjY0tt/vfvXsXAGBlZVVu95BIJDAxMSm39ksjl8vRsmVL/O9//yuWQG3cuBGBgYHYtm2bXmJ5/PgxqlatCplMppf7EVH54hAeUQWZP38+srKy8M0336glT0Xc3NwwZswY8XVBQQE+++wz1K1bF3K5HC4uLvjkk0+Qm5urdp2Liws6d+6MI0eO4M0334SJiQnq1KmDdevWiXUiIiLg7OwMAJgwYQIkEglcXFwAPB36Kvr6WREREZBIJGplcXFxePvtt2FlZQVzc3O4u7vjk08+Ec8/bw7UgQMH0KpVK5iZmcHKygpdu3bFxYsXS7zf1atXERISAisrK1haWmLgwIF4/Pjx8z/Y/+jbty92796NjIwMsezkyZO4cuUK+vbtW6z+gwcPMH78eHh5ecHc3BwKhQLvvvsu/vjjD7HOwYMH0bx5cwDAwIEDxaHAovfZtm1bNGrUCAkJCWjdujWqVq0qfi7/nQMVHBwMExOTYu8/ICAA1apVQ0pKisbvlYj0hwkUUQXZuXMn6tSpg7feekuj+kOGDMH06dPRtGlTLF68GG3atMHcuXPRu3fvYnWvXr2KHj16oEOHDli4cCGqVauGkJAQnD9/HgAQFBSExYsXAwD69OmD9evXIyoqSqv4z58/j86dOyM3NxeRkZFYuHAhunTpgqNHj77wun379iEgIADp6emIiIhAeHg4jh07hpYtW+LmzZvF6vfs2ROPHj3C3Llz0bNnT8TExGDmzJkaxxkUFASJRIIffvhBLNu4cSMaNGiApk2bFqt//fp17NixA507d8aiRYswYcIEnD17Fm3atBGTGQ8PD0RGRgIAPvroI6xfvx7r169H69atxXbu37+Pd999F97e3oiKikK7du1KjG/JkiWwsbFBcHAwVCoVAODLL7/EL7/8gmXLlsHBwUHj90pEeiQQkd5lZmYKAISuXbtqVD8xMVEAIAwZMkStfPz48QIA4cCBA2KZs7OzAEA4fPiwWJaeni7I5XJh3LhxYtmNGzcEAMKCBQvU2gwODhacnZ2LxTBjxgzh2R8ZixcvFgAId+/efW7cRfdYs2aNWObt7S3Y2toK9+/fF8v++OMPQSqVCgMGDCh2v0GDBqm1+cEHHwjW1tbPveez78PMzEwQBEHo0aOH0L59e0EQBEGlUgn29vbCzJkzS/wMcnJyBJVKVex9yOVyITIyUiw7efJksfdWpE2bNgIAITo6usRzbdq0USvbu3evAECYNWuWcP36dcHc3Fzo1q1bqe+RiCoOe6CIKoBSqQQAWFhYaFT/559/BgCEh4erlY8bNw4Ais2V8vT0RKtWrcTXNjY2cHd3x/Xr11865v8qmjv1448/orCwUKNrUlNTkZiYiJCQEFSvXl0sb9y4MTp06CC+z2cNGzZM7XWrVq1w//598TPURN++fXHw4EGkpaXhwIEDSEtLK3H4Dng6b0oqffqjUaVS4f79++Lw5OnTpzW+p1wux8CBAzWq27FjR3z88ceIjIxEUFAQTExM8OWXX2p8LyLSPyZQRBVAoVAAAB49eqRR/b/++gtSqRRubm5q5fb29rCyssJff/2lVl67du1ibVSrVg0PHz58yYiL69WrF1q2bIkhQ4bAzs4OvXv3xpYtW16YTBXF6e7uXuych4cH7t27h+zsbLXy/76XatWqAYBW7+W9996DhYUFNm/ejA0bNqB58+bFPssihYWFWLx4MerVqwe5XI4aNWrAxsYGf/75JzIzMzW+Z61atbSaMP7FF1+gevXqSExMxNKlS2Fra6vxtUSkf0ygiCqAQqGAg4MDzp07p9V1/53E/TxGRkYllguC8NL3KJqfU8TU1BSHDx/Gvn370L9/f/z555/o1asXOnToUKxuWZTlvRSRy+UICgrC2rVrsX379uf2PgHAnDlzEB4ejtatW+O7777D3r17ERcXh4YNG2rc0wY8/Xy0cebMGaSnpwMAzp49q9W1RKR/TKCIKkjnzp1x7do1xMfHl1rX2dkZhYWFuHLlilr5nTt3kJGRIa6o04Vq1aqprVgr8t9eLgCQSqVo3749Fi1ahAsXLmD27Nk4cOAAfv311xLbLoozKSmp2LlLly6hRo0aMDMzK9sbeI6+ffvizJkzePToUYkT74t8//33aNeuHb755hv07t0bHTt2hL+/f7HPRNNkVhPZ2dkYOHAgPD098dFHH2H+/Pk4efKkztonIt1jAkVUQSZOnAgzMzMMGTIEd+7cKXb+2rVrWLJkCYCnQ1AAiq2UW7RoEQAgMDBQZ3HVrVsXmZmZ+PPPP8Wy1NRUbN++Xa3egwcPil1btKHkf7dWKFKzZk14e3tj7dq1agnJuXPn8Msvv4jvszy0a9cOn332GZYvXw57e/vn1jMyMirWu7V161bcvn1brawo0Ssp2dTWpEmTkJycjLVr12LRokVwcXFBcHDwcz9HIqp43EiTqILUrVsXGzduRK9eveDh4aG2E/mxY8ewdetWhISEAACaNGmC4OBgfPXVV8jIyECbNm1w4sQJrF27Ft26dXvuEvmX0bt3b0yaNAkffPABRo8ejcePH2PVqlWoX7++2iTqyMhIHD58GIGBgXB2dkZ6ejpWrlwJR0dHvP32289tf8GCBXj33Xfh5+eHwYMH48mTJ1i2bBksLS0RERGhs/fxX1KpFFOnTi21XufOnREZGYmBAwfirbfewtmzZ7FhwwbUqVNHrV7dunVhZWWF6OhoWFhYwMzMDL6+vnB1ddUqrgMHDmDlypWYMWOGuK3CmjVr0LZtW0ybNg3z58/Xqj0i0pMKXgVIVOldvnxZGDp0qODi4iLIZDLBwsJCaNmypbBs2TIhJydHrJefny/MnDlTcHV1FapUqSI4OTkJU6ZMUasjCE+3MQgMDCx2n/8un3/eNgaCIAi//PKL0KhRI0Emkwnu7u7Cd999V2wbg/379wtdu3YVHBwcBJlMJjg4OAh9+vQRLl++XOwe/13qv2/fPqFly5aCqampoFAohPfff1+4cOGCWp2i+/13m4Q1a9YIAIQbN2489zMVBPVtDJ7nedsYjBs3TqhZs6ZgamoqtGzZUoiPjy9x+4Eff/xR8PT0FIyNjdXeZ5s2bYSGDRuWeM9n21EqlYKzs7PQtGlTIT8/X61eWFiYIJVKhfj4+Be+ByKqGBJB0GImJhERERFxDhQRERGRtphAEREREWmJCRQRERGRlphAEREREWmJCRQRERGRlphAEREREWmJG2m+JgoLC5GSkgILCwudPkKCiIj0QxAEPHr0CA4ODpBKy6f/IicnB3l5eTppSyaTwcTERCdtGSImUK+JlJQUODk5VXQYRERURrdu3YKjo6PO283JyYGphTVQ8Fgn7dnb2+PGjRtMop6DCdRrwsLCAgAg8wyGxEhWwdEQlY/LcZ9XdAhE5ebRIyUa1XMRf57rWl5eHlDwGHLPYKCsvydUeUi7sBZ5eXkaJVARERGYOXOmWpm7uzsuXboE4GlyN27cOGzatAm5ubkICAjAypUrYWdnJ9ZPTk7G8OHD8euvv8Lc3BzBwcGYO3cujI3/TVUOHjyI8PBwnD9/Hk5OTpg6dar4yKsiK1aswIIFC5CWloYmTZpg2bJlePPNN8XzmsSiCSZQr4miYTuJkYwJFBkshUJR0SEQlbtyn4ZhbFLm3xOCRPshxoYNG2Lfvn3/hvFM4hMWFobY2Fhs3boVlpaWGDlyJIKCgnD06FEAgEqlQmBgIOzt7XHs2DGkpqZiwIABqFKlCubMmQMAuHHjBgIDAzFs2DBs2LAB+/fvx5AhQ1CzZk0EBAQAADZv3ozw8HBER0fD19cXUVFRCAgIQFJSEmxtbTWKRVN8lMtrQqlUwtLSEnKvoUygyGClHltS0SEQlRulUgln++rIzMwslz8WxN8TTT6GxEheprYEVS5y//hS41gjIiKwY8cOJCYmFjuXmZkJGxsbbNy4ET169AAAXLp0CR4eHoiPj0eLFi2we/dudO7cGSkpKWJPUHR0NCZNmoS7d+9CJpNh0qRJiI2Nxblz58S2e/fujYyMDOzZswcA4Ovri+bNm2P58uUAns4fdnJywqhRozB58mSNYtEUV+EREREZEolUN4eWrly5AgcHB9SpUwf9+vVDcnIyACAhIQH5+fnw9/cX6zZo0AC1a9dGfHw8ACA+Ph5eXl5qw2gBAQFQKpU4f/68WOfZNorqFLWRl5eHhIQEtTpSqRT+/v5iHU1i0RSH8IiIiKhESqVS7bVcLodcXrx3y9fXFzExMXB3d0dqaipmzpyJVq1a4dy5c0hLS4NMJoOVlZXaNXZ2dkhLSwMApKWlFZuDVPS6tDpKpRJPnjzBw4cPoVKpSqxTNBdLk1g0xQSKiIjIkEgkT4+ytgEUW/09Y8YMREREFKv+7rvvil83btwYvr6+cHZ2xpYtW2Bqalq2WF5RTKCIiIgMyUsOwRVrA0+3XHh2DlRJvU8lsbKyQv369XH16lV06NABeXl5yMjIUOv5uXPnDuzt7QE83TLhxIkTam3cuXNHPFf0v0Vlz9ZRKBQwNTWFkZERjIyMSqzzbBulxaIpzoEiIiKiEikUCrVD0wQqKysL165dQ82aNeHj44MqVapg//794vmkpCQkJyfDz88PAODn54ezZ88iPT1drBMXFweFQgFPT0+xzrNtFNUpakMmk8HHx0etTmFhIfbv3y/W0SQWTbEHioiIyJDocAhPU+PHj8f7778PZ2dnpKSkYMaMGTAyMkKfPn1gaWmJwYMHIzw8HNWrV4dCocCoUaPg5+cnrnrr2LEjPD090b9/f8yfPx9paWmYOnUqQkNDxaRt2LBhWL58OSZOnIhBgwbhwIED2LJlC2JjY8U4wsPDERwcjGbNmuHNN99EVFQUsrOzMXDgQADQKBZNMYEiIiIyKDoYwtNygOrvv/9Gnz59cP/+fdjY2ODtt9/G77//DhsbGwDA4sWLIZVK0b17d7XNK4sYGRlh165dGD58OPz8/GBmZobg4GBERkaKdVxdXREbG4uwsDAsWbIEjo6OWL16tbgHFAD06tULd+/exfTp05GWlgZvb2/s2bNHbWJ5abFoivtAvSa4DxRVBtwHigyZ3vaB8hkDiXEZ94EqyEVuwpJyi9UQsAeKiIjIkFTAEF5lxASKiIjIkOhwFR49Hz8hIiIiIi2xB4qIiMiQcAhPL5hAERERGRIO4ekFEygiIiJDwh4ovWCKSURERKQl9kAREREZEg7h6QUTKCIiIkMikegggeIQXmmYYhIRERFpiT1QREREhkQqeXqUtQ16ISZQREREhoRzoPSCnxARERGRltgDRUREZEi4D5ReMIEiIiIyJBzC0wt+QkRERERaYg8UERGRIeEQnl4wgSIiIjIkHMLTCyZQREREhoQ9UHrBFJOIiIhIS+yBIiIiMiQcwtMLJlBERESGhEN4esEUk4iIiEhL7IEiIiIyKDoYwmP/SqmYQBERERkSDuHpBVNMIiIiIi2xB4qIiMiQSCQ6WIXHHqjSMIEiIiIyJNzGQC/4CRERERFpiT1QREREhoSTyPWCCRQREZEh4RCeXjCBIiIiMiTsgdILpphEREREWmIPFBERkSHhEJ5eMIEiIiIyJBzC0wummERERERaYg8UERGRAZFIJJCwB6rcMYEiIiIyIEyg9INDeERERERaYg8UERGRIZH8c5S1DXohJlBEREQGhEN4+sEhPCIiIiItsQeKiIjIgLAHSj+YQBERERkQJlD6wQSKiIjIgDCB0g/OgSIiIiLSEnugiIiIDAm3MdALJlBEREQGhEN4+sEhPCIiIiItsQeKiIjIgEgk0EEPlG5iMWRMoIiIiAyIBDoYwmMGVSoO4RERERFpiT1QREREBoSTyPWDCRQREZEh4TYGesEhPCIiIiItsQeKiIjIkOhgCE/gEF6pmEAREREZEF3MgSr7Kj7DxwSKiIjIgDCB0g/OgSIiIiLSEnugiIiIDAlX4ekFEygiIiIDwiE8/eAQHhEREZGWmEAREREZkKIeqLIeL2vevHmQSCQYO3asWJaTk4PQ0FBYW1vD3Nwc3bt3x507d9SuS05ORmBgIKpWrQpbW1tMmDABBQUFanUOHjyIpk2bQi6Xw83NDTExMcXuv2LFCri4uMDExAS+vr44ceKE2nlNYtEEEygiIiIDUpEJ1MmTJ/Hll1+icePGauVhYWHYuXMntm7dikOHDiElJQVBQUHieZVKhcDAQOTl5eHYsWNYu3YtYmJiMH36dLHOjRs3EBgYiHbt2iExMRFjx47FkCFDsHfvXrHO5s2bER4ejhkzZuD06dNo0qQJAgICkJ6ernEsmpIIgiBofRXpnVKphKWlJeReQyExklV0OETlIvXYkooOgajcKJVKONtXR2ZmJhQKRbm0b2lpCdvgdZDKqpaprcK8x0hfO0CrWLOystC0aVOsXLkSs2bNgre3N6KiopCZmQkbGxts3LgRPXr0AABcunQJHh4eiI+PR4sWLbB792507twZKSkpsLOzAwBER0dj0qRJuHv3LmQyGSZNmoTY2FicO3dOvGfv3r2RkZGBPXv2AAB8fX3RvHlzLF++/On7KCyEk5MTRo0ahcmTJ2sUi6bYA0VERGRAdNkDpVQq1Y7c3Nzn3jc0NBSBgYHw9/dXK09ISEB+fr5aeYMGDVC7dm3Ex8cDAOLj4+Hl5SUmTwAQEBAApVKJ8+fPi3X+23ZAQIDYRl5eHhISEtTqSKVS+Pv7i3U0iUVTTKCIiIgMiURHBwAnJydYWlqKx9y5c0u85aZNm3D69OkSz6elpUEmk8HKykqt3M7ODmlpaWKdZ5OnovNF515UR6lU4smTJ7h37x5UKlWJdZ5to7RYNMVtDIiIiKhEt27dUhvCk8vlJdYZM2YM4uLiYGJios/wKhR7oIiIiAyILofwFAqF2lFSApWQkID09HQ0bdoUxsbGMDY2xqFDh7B06VIYGxvDzs4OeXl5yMjIULvuzp07sLe3BwDY29sXWwlX9Lq0OgqFAqampqhRowaMjIxKrPNsG6XFoikmUERERAZE36vw2rdvj7NnzyIxMVE8mjVrhn79+olfV6lSBfv37xevSUpKQnJyMvz8/AAAfn5+OHv2rNpqubi4OCgUCnh6eop1nm2jqE5RGzKZDD4+Pmp1CgsLsX//frGOj49PqbFoikN4REREBkTfO5FbWFigUaNGamVmZmawtrYWywcPHozw8HBUr14dCoUCo0aNgp+fn7jqrWPHjvD09ET//v0xf/58pKWlYerUqQgNDRV7vYYNG4bly5dj4sSJGDRoEA4cOIAtW7YgNjZWvG94eDiCg4PRrFkzvPnmm4iKikJ2djYGDhwIALC0tCw1Fk0xgSIiIqJytXjxYkilUnTv3h25ubkICAjAypUrxfNGRkbYtWsXhg8fDj8/P5iZmSE4OBiRkZFiHVdXV8TGxiIsLAxLliyBo6MjVq9ejYCAALFOr169cPfuXUyfPh1paWnw9vbGnj171CaWlxaLprgP1GuC+0BRZcB9oMiQ6WsfKIehG3WyD1TK133LLVZDwB4oIiIiA8KHCesHJ5ETERERaYk9UBXIxcUFY8eOVXvgImlm0tD3MPmj99TKLt9Mg+//zQIAyGXGmDU2CEEdfCCTGePA7xcx/vPNuPvgEQCgT2dfrJzRv8S263WcjHsPs9TKfBvXwa4vx+Di9VS07jdP7dyQ/2uNUR+2h621Aueu3MakBVtx+sJf4vmd0WPwtk89tWvWbDuC8HmbXu7NU6WzdF0cfj74B64mp8NEVgXNvFwxdcT7cHO2K/3ilyQIAhas3o0NP8VD+egJmjd2xbwJ/4c6TrbF6ubmFSBw6CKcv3IbcTET0Ki+Y7nFRaVjD5R+VGgPVEhICCQSCebNU/+FtGPHDq3/z3NxcUFUVJRG9f67VNPRkf/YX0cXr6XAvdMU8Xh3yGLx3Jyw7ujUqhFCpnyDzh9Hwb6GJdbPHyKe3x53Wu1a905TsC/+Ao4kXCmWPCnMTbFqZn8cOnm5WAwfdGiKWWM/wOerd6Nt/89x7sptbFsWihrVzNXqxWw/qnavGct26PbDIIMWf+YqBnZvhdivwrB5yQgUFKjQe+wqPH7y/MdqlOaL1bsxZtaG555f8d1+fLP1MD6f0BOxq8NQ1USGPmHRyMnNL1b3sxU/wq4G58m8KiTQwTYGYAJVmgofwjMxMcHnn3+Ohw8f6u2ekZGRSE1NFY8zZ86UWC8/v/gPCnp1FKgKkX7/kXg8yMwGACjMTPBhVz98uvgH/HbqMv64dAsjI7+Db5O6aNbIBQCQk5uvdq1KJaB1s/r47sdjxe6zeEpvfL/3FE6evVHs3Ii+72DdjmPYuPN3JN1IQ/jcTXick4cPu6jvJ/IkJ0/tfo+yc3T/gZDB+t/i4egV6Av3OjXRsF4tRE3th9t3HuKPS7fEOpmPHmPc3P+h4XufoJ7/RPQYuRznr9x+qfsJgoCvtxzC2JCO6NTaC55utbB0+oe4cy8Tew6fVau7P/4CDp1IwvSR3cryFoleOxWeQPn7+8Pe3v65z9cpsm3bNjRs2BByuRwuLi5YuHCheK5t27b466+/EBYWplHXpYWFBezt7cXDxsYGwNMuy1WrVqFLly4wMzPD7NmzoVKpMHjwYLi6usLU1BTu7u5YskR9pVDbtm2LDcN169YNISEh4uv09HS8//77MDU1haurKzZseP5ffqSZOk42uPDzbJzZEYGvPguGo101AEATj9qQVTHGwRNJYt0rf93BrdQHaO7lWmJbvQPfxJOcPPx4IFGtvO/7LeBcyxqff7272DVVjI3g3cBJ7T6CIODQiaRi9/m/Ts1wNW4ejm36BNNDu8BUXuVl3zYRHmU/AQBUU/y70uqjqWtw72EWNiwchr1rxsPL3RH/N3oFHiqztW4/OeU+0u8r0apZfbFMYW6KNzydcercv39I3H2gxIR5m7Bs+oeoasLv6VeFvjfSrKwqfA6UkZER5syZg759+2L06NElDqclJCSgZ8+eiIiIQK9evXDs2DGMGDEC1tbWCAkJwQ8//IAmTZrgo48+wtChQ8sUT0REBObNm4eoqCgYGxujsLAQjo6O2Lp1K6ytrXHs2DF89NFHqFmzJnr27KlxuyEhIUhJScGvv/6KKlWqYPTo0Wo7rpJ2Es7fROjM73D1rzuwq2GJSUPfxc9fh+Gt3rNhZ61Abl4+lFlP1K5Jf6CEnXXJwwwfdvHD93tPqQ1P1HGywYzQLnjvoyioVIXFrrG2MoexsZE4r6rI3QdK1HP5d27K93tP4VbqA6TdzUTDeg6YMbIr3JxtMWDi6rJ8BFRJFRYWYnrUD2je2BUN6joAAI7/cQ1nLiTjbOxsyGVPf6zPGNUNew6fxa4Df6B/t7e0ukf6P9/TNtUt1MptqluI3++CIGDMrI3o360lvD1q41bq/bK+NdKVZx4GXKY26IUqPIECgA8++ADe3t6YMWMGvvnmm2LnFy1ahPbt22PatGkAgPr16+PChQtYsGABQkJCUL16dRgZGYk9S6WZNGkSpk6dKr6eM2cORo8eDQDo27evuGNpkZkzZ4pfu7q6Ij4+Hlu2bNE4gbp8+TJ2796NEydOoHnz5gCAb775Bh4eHs+9Jjc3F7m5/85vUCqVGt2rsth37IL49fmrKTh17ibO7oxEN/+mJc7ReJHmXq5oUKcmhs1YJ5ZJpRJ8PSsE8776GdeSy5bort1+VPz6wrUUpN1T4qdVo+FSqwZu3r5Xprap8pmy8Htcup6GH6PHiGUXrqYg+0kuPN+dolY3Jzcff/3zPfZ74jX0GxctnsvPV0EQBOz6NVEsmz+xF7oHNNMojm+2HkbW4xyMHtChDO+G6PX1SiRQAPD555/jnXfewfjx44udu3jxIrp27apW1rJlS0RFRUGlUsHIyEire02YMEFteK1GjRri182aFf/hsWLFCnz77bdITk7GkydPkJeXB29vb43vd/HiRRgbG8PHx0csa9CgAaysrJ57zdy5c9USN3oxZdYTXE1ORx0nG/x6/BLksipQmJuq9ULZVlfgzv3iiWj/rn74M+mW2nwS86omaOrpjMb1HTF/wv8BeJpUSaVS3I1fgqBRK/B74jUUFKhK+CtdgfQS7lMk4dxNAE97uJhAkTY+Wfg99h09j+0rR8PB1kosz36cCztrBbatGFXsGoW5KQCgiYcT9q2dKJZ/s+UwUu9lYOqILmKZTbWn38u2/3xP333wCHY1LMXzdx88QsN6tQAARxKuIOHcTTi3Had2v06DFyKoow+WTvuwjO+WXhZX4enHK5NAtW7dGgEBAZgyZYpaclMeatSoATc3txLPmZmZqb3etGkTxo8fj4ULF8LPzw8WFhZYsGABjh8/LtaRSqX474buZZ2APmXKFISHh4uvlUolnJycytSmITMzlcG1Vg1svncCf1xMRl5+Ado0d8fOf/66dnO2hVPN6sUmgpuZytDNvyk+W/GTWvmj7By81Xu2WtngHq3Qqll9hEz+Bn/dvo/8AhUSL91Cm+bu+PnQnwCe/tBp3bw+Vm89/NxYvf5Z4n3nXmZZ3zZVEoIg4NNF27D70J/YtmIkajtYq533cndE+oNHMDaSwqmmdYltmMplcHW0EV9bKari0eMctbIitR2sYWutwJFTl8UtCR5l5+DMhb8Q/MHbAIBZYUFqW4mk3VOiT9gqREcGo2lDl7K+ZSoDJlD68cokUAAwb948eHt7w93dXa3cw8MDR48eVSs7evQo6tevL/Y+yWQyqFQqncd09OhRvPXWWxgxYoRYdu3aNbU6NjY2SE1NFV+rVCqcO3cO7dq1A/C0t6mgoAAJCQniEF5SUhIyMjKee1+5XC4+QJGKixzzAfb8dha3Uh+gpo0lJn8UCFVhIbbtTYAyOwff/RiP2WFBeKjMxqPsHMyf8H848ed1nPqn96fIBx18YGwkxebdJ9XKBUHAxWupamV3H2QhN69ArXzlxgNYOaM/zlxMxunzNzG8TzuYmcqxYefvAACXWjXQo1MzxB09jweZ2WhUrxZmhwXh6OkrOH81pXw+HDI4U77Yiu1xp7Hm8yEwr2oi9nBamJvAVC5D6+bu8GnkgoGTv8HUEV1Qt7YN0u4pse/oebzbpjG8PWprdT+JRIKhPdsgau0vcHWyQW0Ha3z+1c+wq2GJTq29AACO9tXVrjGr+vTnlUutGmq9Y6R/EsnTo6xt0Iu9UgmUl5cX+vXrh6VLl6qVjxs3Ds2bN8dnn32GXr16IT4+HsuXL1d7+J+LiwsOHz6M3r17Qy6Xqw3LlUW9evWwbt067N27F66urli/fj1OnjwJV9d/V1m98847CA8PR2xsLOrWrYtFixapJUfu7u7o1KkTPv74Y6xatQrGxsYYO3YsTE1NdRJjZVTL1gqrZw1EdcuquPcwC8f/uI4OAxfifsbTPZw+WbwNhYKAdZ8PUdtI87/6d/XDroN/FJtwrqntcadRw8ocn3wcCFtrC5y9fBs9Rq8QJ9rmFxSg7ZvuGN67HaqaynD7zkPsPJCIL77d+/Jvniqdonl03UOXqZVHfdoXvQJ9IZFIsOGLjzHvy1iEzd6I+xlZsLG2QIsmdYsNMWsq9MP2eJyThwmfb4Yy6wnebFwHGxcNgwlXkBIBqOCHCYeEhCAjIwM7duwQy27evAl3d3fk5eWpDYtt27YN06dPx5UrV1CzZk2MGjVKbb7U77//jo8//hhJSUnIzc0tNqRW5EW7f0skEmzfvh3dunUTy3JzczFs2DBs374dEokEffr0gaWlJXbv3o3ExEQAT4frxowZg82bN8PY2BhhYWH4/fffYWVlhZiYGABAWloahgwZgn379sHOzg6zZs3CtGnTNN6JnA8TpsqADxMmQ6avhwnXGfU9pHKz0i94gcLcbFxf1oMPE36BCk2gSHNMoKgyYAJFhkxvCdTo72FUxgRKlZuN60uZQL1IhW+kSURERPS6eaXmQBEREVHZcBWefjCBIiIiMiBchacfHMIjIiIi0hJ7oIiIiAzI06cmlK0LSSjj9ZUBEygiIiIDwiE8/eAQHhEREZGW2ANFRERkQLgKTz+YQBERERkQDuHpBxMoIiIiA8IeKP3gHCgiIiIiLbEHioiIyICwB0o/mEAREREZEM6B0g8O4RERERFpiT1QREREBkQCHQzhgV1QpWECRUREZEA4hKcfHMIjIiIi0hJ7oIiIiAwIV+HpBxMoIiIiA8IhPP3gEB4RERGRltgDRUREZEA4hKcfTKCIiIgMCIfw9IMJFBERkQFhD5R+cA4UERERkZbYA0VERGRIdDCEx43IS8cEioiIyIBwCE8/OIRHREREpCX2QBERERkQrsLTDyZQREREBoRDePrBITwiIiIiLbEHioiIyIBwCE8/mEAREREZEA7h6QeH8IiIiIi0xB4oIiIiA8IeKP1gAkVERGRAOAdKP5hAERERGRD2QOkH50ARERERaYk9UERERAaEQ3j6wQSKiIjIgHAITz84hEdERESkJfZAERERGRAJdDCEp5NIDBsTKCIiIgMilUggLWMGVdbrKwMO4RERERFpiT1QREREBoSr8PSDCRQREZEB4So8/WACRUREZECkkqdHWdugF+McKCIiIiItsQeKiIjIkEh0MATHHqhSsQeKiIjIgBRNIi/roY1Vq1ahcePGUCgUUCgU8PPzw+7du8XzOTk5CA0NhbW1NczNzdG9e3fcuXNHrY3k5GQEBgaiatWqsLW1xYQJE1BQUKBW5+DBg2jatCnkcjnc3NwQExNTLJYVK1bAxcUFJiYm8PX1xYkTJ9TOaxKLJphAERERUZk4Ojpi3rx5SEhIwKlTp/DOO++ga9euOH/+PAAgLCwMO3fuxNatW3Ho0CGkpKQgKChIvF6lUiEwMBB5eXk4duwY1q5di5iYGEyfPl2sc+PGDQQGBqJdu3ZITEzE2LFjMWTIEOzdu1ess3nzZoSHh2PGjBk4ffo0mjRpgoCAAKSnp4t1SotFUxJBEISX+bBIv5RKJSwtLSH3GgqJkayiwyEqF6nHllR0CETlRqlUwtm+OjIzM6FQKMqlfUtLS3RcfABVTM3L1Fb+kyz8EvZOmWKtXr06FixYgB49esDGxgYbN25Ejx49AACXLl2Ch4cH4uPj0aJFC+zevRudO3dGSkoK7OzsAADR0dGYNGkS7t69C5lMhkmTJiE2Nhbnzp0T79G7d29kZGRgz549AABfX180b94cy5cvBwAUFhbCyckJo0aNwuTJk5GZmVlqLJpiDxQREZEBKVqFV9YDeJqUPXvk5uaWen+VSoVNmzYhOzsbfn5+SEhIQH5+Pvz9/cU6DRo0QO3atREfHw8AiI+Ph5eXl5g8AUBAQACUSqXYixUfH6/WRlGdojby8vKQkJCgVkcqlcLf31+so0ksmmICRURERCVycnKCpaWleMydO/e5dc+ePQtzc3PI5XIMGzYM27dvh6enJ9LS0iCTyWBlZaVW387ODmlpaQCAtLQ0teSp6HzRuRfVUSqVePLkCe7duweVSlVinWfbKC0WTXEVHhERkQHR5Uaat27dUhvCk8vlz73G3d0diYmJyMzMxPfff4/g4GAcOnSoTHG8yjRKoH766SeNG+zSpctLB0NERERlo8tHuRStqtOETCaDm5sbAMDHxwcnT57EkiVL0KtXL+Tl5SEjI0Ot5+fOnTuwt7cHANjb2xdbLVe0Mu7ZOv9dLXfnzh0oFAqYmprCyMgIRkZGJdZ5to3SYtGURglUt27dNGpMIpFApVJpFQAREREZnsLCQuTm5sLHxwdVqlTB/v370b17dwBAUlISkpOT4efnBwDw8/PD7NmzkZ6eDltbWwBAXFwcFAoFPD09xTo///yz2j3i4uLENmQyGXx8fLB//34xbyksLMT+/fsxcuRIANAoFk1plEAVFhZq1SgRERFVDKlEAmkZu6C0vX7KlCl49913Ubt2bTx69AgbN27EwYMHsXfvXlhaWmLw4MEIDw9H9erVoVAoMGrUKPj5+Ymr3jp27AhPT0/0798f8+fPR1paGqZOnYrQ0FBx2HDYsGFYvnw5Jk6ciEGDBuHAgQPYsmULYmNjxTjCw8MRHByMZs2a4c0330RUVBSys7MxcOBAANAoFk2VaQ5UTk4OTExMytIEERER6ZAuh/A0lZ6ejgEDBiA1NRWWlpZo3Lgx9u7diw4dOgAAFi9eDKlUiu7duyM3NxcBAQFYuXKleL2RkRF27dqF4cOHw8/PD2ZmZggODkZkZKRYx9XVFbGxsQgLC8OSJUvg6OiI1atXIyAgQKzTq1cv3L17F9OnT0daWhq8vb2xZ88etYnlpcWi8Wek7T5QKpUKc+bMQXR0NO7cuYPLly+jTp06mDZtGlxcXDB48GCtg6DScR8oqgy4DxQZMn3tA9VlxSGd7AP1U2ibcovVEGi9jcHs2bMRExOD+fPnQyb79xd5o0aNsHr1ap0GR0RERPQq0jqBWrduHb766iv069cPRkZGYnmTJk1w6dIlnQZHRERE2qmIZ+FVRlrPgbp9+7a4TPFZhYWFyM/P10lQRERE9HIqYhJ5ZaR1D5Snpyd+++23YuXff/893njjDZ0ERURERPQq07oHavr06QgODsbt27dRWFiIH374AUlJSVi3bh127dpVHjESERGRhiT/HGVtg15M6x6orl27YufOndi3bx/MzMwwffp0XLx4ETt37hSXKxIREVHFKHqUS1kPerGX2geqVatWiIuL03UsRERERK+Fl95I89SpU7h48SKAp/OifHx8dBYUERERvRyp5OlR1jboxbROoP7++2/06dMHR48eFR/El5GRgbfeegubNm2Co6OjrmMkIiIiDeliCI5DeKXTeg7UkCFDkJ+fj4sXL+LBgwd48OABLl68iMLCQgwZMqQ8YiQiIiJ6pWjdA3Xo0CEcO3YM7u7uYpm7uzuWLVuGVq1a6TQ4IiIi0h47kMqf1gmUk5NTiRtmqlQqODg46CQoIiIiejkcwtMPrYfwFixYgFGjRuHUqVNi2alTpzBmzBh88cUXOg2OiIiItFM0ibysB72YRj1Q1apVU8tGs7Oz4evrC2Pjp5cXFBTA2NgYgwYNQrdu3colUCIiIqJXhUYJVFRUVDmHQURERLrAITz90CiBCg4OLu84iIiISAf4KBf9eOmNNAEgJycHeXl5amUKhaJMARERERG96rROoLKzszFp0iRs2bIF9+/fL3ZepVLpJDAiIiLSnlQigbSMQ3Blvb4y0HoV3sSJE3HgwAGsWrUKcrkcq1evxsyZM+Hg4IB169aVR4xERESkIYlENwe9mNY9UDt37sS6devQtm1bDBw4EK1atYKbmxucnZ2xYcMG9OvXrzziJCIiInplaN0D9eDBA9SpUwfA0/lODx48AAC8/fbbOHz4sG6jIyIiIq0UrcIr60EvpnUCVadOHdy4cQMA0KBBA2zZsgXA056poocLExERUcXgEJ5+aJ1ADRw4EH/88QcAYPLkyVixYgVMTEwQFhaGCRMm6DxAIiIioleN1nOgwsLCxK/9/f1x6dIlJCQkwM3NDY0bN9ZpcERERKQdrsLTjzLtAwUAzs7OcHZ21kUsREREVEa6GIJj/lQ6jRKopUuXatzg6NGjXzoYIiIiKhs+ykU/NEqgFi9erFFjEomECRQREREZPI0SqKJVd1Txkg9+wcflEBG9hvKqGOnlPlK8xAqxEtqgFyvzHCgiIiJ6dXAITz+YZBIRERFpiT1QREREBkQiAaRchVfumEAREREZEKkOEqiyXl8ZcAiPiIiISEsvlUD99ttv+PDDD+Hn54fbt28DANavX48jR47oNDgiIiLSDh8mrB9aJ1Dbtm1DQEAATE1NcebMGeTm5gIAMjMzMWfOHJ0HSERERJorGsIr60EvpnUCNWvWLERHR+Prr79GlSpVxPKWLVvi9OnTOg2OiIiI6FWk9STypKQktG7duli5paUlMjIydBETERERvSQ+C08/tO6Bsre3x9WrV4uVHzlyBHXq1NFJUERERPRypBKJTg56Ma0TqKFDh2LMmDE4fvw4JBIJUlJSsGHDBowfPx7Dhw8vjxiJiIhIQ1IdHfRiWg/hTZ48GYWFhWjfvj0eP36M1q1bQy6XY/z48Rg1alR5xEhERET0StE6gZJIJPj0008xYcIEXL16FVlZWfD09IS5uXl5xEdERERa4Bwo/XjpnchlMhk8PT11GQsRERGVkRRln8MkBTOo0midQLVr1+6FG2wdOHCgTAERERERveq0TqC8vb3VXufn5yMxMRHnzp1DcHCwruIiIiKil8AhPP3QOoFavHhxieURERHIysoqc0BERET08vgwYf3Q2UrFDz/8EN9++62umiMiIiJ6Zb30JPL/io+Ph4mJia6aIyIiopcgkaDMk8g5hFc6rROooKAgtdeCICA1NRWnTp3CtGnTdBYYERERaY9zoPRD6wTK0tJS7bVUKoW7uzsiIyPRsWNHnQVGRERE9KrSKoFSqVQYOHAgvLy8UK1atfKKiYiIiF4SJ5Hrh1aTyI2MjNCxY0dkZGSUUzhERERUFhId/UcvpvUqvEaNGuH69evlEQsRERGVUVEPVFkPejGtE6hZs2Zh/Pjx2LVrF1JTU6FUKtUOIiIiIkOn8RyoyMhIjBs3Du+99x4AoEuXLmqPdBEEARKJBCqVSvdREhERkUY4B0o/NE6gZs6ciWHDhuHXX38tz3iIiIioDCQSyQufWatpG/RiGidQgiAAANq0aVNuwRARERG9DrTaxoAZKRER0auNQ3j6oVUCVb9+/VKTqAcPHpQpICIiInp53IlcP7RKoGbOnFlsJ3IiIiKiykarBKp3796wtbUtr1iIiIiojKQSSZkfJlzW6ysDjRMozn8iIiJ69XEOlH5ovJFm0So8IiIiospO4wSqsLCQw3dERESvOsm/E8lf9tD2UXhz585F8+bNYWFhAVtbW3Tr1g1JSUlqdXJychAaGgpra2uYm5uje/fuuHPnjlqd5ORkBAYGomrVqrC1tcWECRNQUFCgVufgwYNo2rQp5HI53NzcEBMTUyyeFStWwMXFBSYmJvD19cWJEye0jqU0Wj/KhYiIiF5dUkh0cmjj0KFDCA0Nxe+//464uDjk5+ejY8eOyM7OFuuEhYVh586d2Lp1Kw4dOoSUlBQEBQWJ51UqFQIDA5GXl4djx45h7dq1iImJwfTp08U6N27cQGBgINq1a4fExESMHTsWQ4YMwd69e8U6mzdvRnh4OGbMmIHTp0+jSZMmCAgIQHp6usaxaEIicGzutaBUKmFpaYk79zOhUCgqOhwiItKSUqmEnbUlMjPL5+d40e+JL375E6ZmFmVq60n2I4zv2PilY7179y5sbW1x6NAhtG7dGpmZmbCxscHGjRvRo0cPAMClS5fg4eGB+Ph4tGjRArt370bnzp2RkpICOzs7AEB0dDQmTZqEu3fvQiaTYdKkSYiNjcW5c+fEe/Xu3RsZGRnYs2cPAMDX1xfNmzfH8uXLATwdQXNycsKoUaMwefJkjWLRBHugiIiIqERKpVLtyM3N1ei6zMxMAED16tUBAAkJCcjPz4e/v79Yp0GDBqhduzbi4+MBAPHx8fDy8hKTJwAICAiAUqnE+fPnxTrPtlFUp6iNvLw8JCQkqNWRSqXw9/cX62gSiyaYQBERERmQolV4ZT0AwMnJCZaWluIxd+7cUu9fWFiIsWPHomXLlmjUqBEAIC0tDTKZDFZWVmp17ezskJaWJtZ5NnkqOl907kV1lEolnjx5gnv37kGlUpVY59k2SotFE1rtA0VERESvNl3uA3Xr1i21ITy5XF7qtaGhoTh37hyOHDlSphhedeyBIiIiohIpFAq1o7QEauTIkdi1axd+/fVXODo6iuX29vbIy8tDRkaGWv07d+7A3t5erPPflXBFr0uro1AoYGpqiho1asDIyKjEOs+2UVosmmACRUREZEDKuoXByzxLTxAEjBw5Etu3b8eBAwfg6uqqdt7HxwdVqlTB/v37xbKkpCQkJyfDz88PAODn54ezZ8+qrZaLi4uDQqGAp6enWOfZNorqFLUhk8ng4+OjVqewsBD79+8X62gSiyY4hEdERGRApNDBEJ6W2xiEhoZi48aN+PHHH2FhYSHOJbK0tISpqSksLS0xePBghIeHo3r16lAoFBg1ahT8/PzEVW8dO3aEp6cn+vfvj/nz5yMtLQ1Tp05FaGio2PM1bNgwLF++HBMnTsSgQYNw4MABbNmyBbGxsWIs4eHhCA4ORrNmzfDmm28iKioK2dnZGDhwoBhTabFoggkUERERlcmqVasAAG3btlUrX7NmDUJCQgAAixcvhlQqRffu3ZGbm4uAgACsXLlSrGtkZIRdu3Zh+PDh8PPzg5mZGYKDgxEZGSnWcXV1RWxsLMLCwrBkyRI4Ojpi9erVCAgIEOv06tULd+/exfTp05GWlgZvb2/s2bNHbWJ5abFogvtAvSa4DxQR0etNX/tALT9wDqbmZdwHKusRRr7TqNxiNQTsgSIiIjIgUpR9gjMnSJeOnxERERGRltgDRUREZEAkEgkkZZxEXtbrKwMmUERERAZE8s9R1jboxZhAERERGRBd7kROz8c5UERERERaYg8UERGRgWH/UfljAkVERGRAXuZRLCW1QS/GITwiIiIiLbEHioiIyIBwGwP9YAJFRERkQLgTuX7wMyIiIiLSEnugiIiIDAiH8PSDCRQREZEB4U7k+sEhPCIiIiItsQeKiIjIgHAITz+YQBERERkQrsLTDyZQREREBoQ9UPrBJJOIiIhIS+yBIiIiMiBchacfTKCIiIgMCB8mrB8cwiMiIiLSEnugiIiIDIgUEkjLOAhX1usrAyZQREREBoRDePrBITwiIiIiLbEHioiIyIBI/vmvrG3QizGBIiIiMiAcwtMPDuERERERaYk9UERERAZEooNVeBzCKx0TKCIiIgPCITz9YAJFRERkQJhA6QfnQBERERFpiT1QREREBoTbGOgHEygiIiIDIpU8PcraBr0Yh/CIiIiItMQeKCIiIgPCITz9YAJFRERkQLgKTz84hEdERESkJfZAERERGRAJyj4Exw6o0jGBIiIiMiBchacfHMIjIiIi0hJ7oCpISEgIMjIysGPHjooOpdL45vvf8O2233Ar9QEAoEEde0wY/C46tGwIAOj8cRSOnr6qdk1IUEssntJHfH0r7QHGzduMI6cuw6yqHL0DfTEjtAuMjY3090aI/nH09FUsW78Pf1xKRto9Jb5bMBSBbZuI50dErMf/Yo+rXdO+hQe+XxZarK3cvHz4h3yBc1du4/B3k+Hl7iie2x9/AfO++hmXrqdCLquCt96oi1ljg1Dbwbr83hy9NK7C049Kl0CFhIRg7dq1xcqvXLkCNze3CoiI9MXB1gozRnZFXScbCIKA/8UeR7/xX+HQd5PhUbcmACC421uY8nFn8RpTkyri1ypVIXqNXQU7awX2fjMOafcyMTxiPaoYG2F6aBe9vx+ix09y0ah+LXzYxQ/9J35dYp32fp5YMf1D8bVcVvKP/RlLf4S9jSXOXbmtVv7X7XvoN/4rjOj7Dr76LBjKrBx8smgb+k/8Goe+m6y7N0M6w1V4+lHpEigA6NSpE9asWaNWZmNjo/Y6Ly8PMplMn2FROXu3tZfa62kjuuDbbUdw6twNMYEyNZHBroaixOsP/H4RSTfSsGPFKNhaK+Dl7ohPhgUiYtmPmPzRe5BVqZT/nKgCdWjZUOxBfR65zPi539NF4o6ex6/HL2Lt50Ow79gFtXOJl25BpSrE1OGdIZU+nfUx8sP26Df+K+QXqFCFva+vHAnKPgmc+VPpKuUcKLlcDnt7e7Wjffv2GDlyJMaOHYsaNWogICAAALBo0SJ4eXnBzMwMTk5OGDFiBLKyssS2IiIi4O3trdZ+VFQUXFxcxNcqlQrh4eGwsrKCtbU1Jk6cCEEQ9PFW6TlUqkJs++UUHj/JQ3MvV7F8655TqOs/CX69ZmPm8h/xOCdPPHfy7A141nWArfW/v4zat/DAo+wcXLqeqtf4iTR1JOEK6nWcjObdIxE+bxMeZGSpnU+/r8TYOf9D9MwBqGpS/I9G7wZOkEql2LDzd6hUhcjMeoItu0+g7ZvuTJ6oUuOfzM9Yu3Ythg8fjqNHj4plUqkUS5cuhaurK65fv44RI0Zg4sSJWLlypcbtLly4EDExMfj222/h4eGBhQsXYvv27XjnnXeee01ubi5yc3PF10ql8uXeFKk5f/U2AgYtRE5eAcxM5Vi/YCga1Hna+9QjoBmcalaHvY0lzl9JwczlP+LqX+lYv2AogKe/aGytLdTas/knmbpzTwm46/e9EJWm/Vse6NyuCZxrWePm3/fw2cqd+L8xq/DLt+NgZCSFIAgYMfM7DAx6G294OiM55X6xNpxr1cAPy0Ix8JNvETZ3E1SqQjT3csXWJcMr4B2RJqSQQFrGMTgp+6BKVSkTqF27dsHc3Fx8/e677wIA6tWrh/nz56vVHTt2rPi1i4sLZs2ahWHDhmmVQEVFRWHKlCkICgoCAERHR2Pv3r0vvGbu3LmYOXOmxvcgzdRztsPhDVOgzHqCH/efwYiI9dj15Rg0qFMTIUFvi/UautWCfQ0Fuo5Yhht/34Wro80LWiV6NXXv2Ez8uqFbLTR0q4U3PojAkYQraPOmO77afAhZj3MQFtLxuW3cuafEmDkb0TvQFz0CfPAoOxdzv9yF4EnfYPuKkZBwsswrh0N4+lEph/DatWuHxMRE8Vi6dCkAwMfHp1jdffv2oX379qhVqxYsLCzQv39/3L9/H48fP9boXpmZmUhNTYWvr69YZmxsjGbNmr3gKmDKlCnIzMwUj1u3bmnxDul5ZFWMUcfJBt4etTFjZFc0qlcL0ZsOlljXp5ELAOD6rbsAAFtrBdLvP1Krc/f+057B0uaYEL0KXBxrwNrKHNf/fvo9ffjUZZw8ewN2LceiRovRaBr09I+2dsHzMTxiHQBg9dbDUJiZInJ0NzR2d0LLpm74MjIYh04m4dS5mxX1VogqXKXsgTIzMytxxZ2ZmZna65s3b6Jz584YPnw4Zs+ejerVq+PIkSMYPHgw8vLyULVqVUil0mLzmfLz88sco1wuh1wuL3M79GKFgoC8vIISz529/DcAwK6GJQCguZcrFq7Zi7sPHsGm+tOhvF+PX4KFmQncXe31EzBRGdy+8xAPMrNh98/Q87zxPfDpsH9Xnabdy0T3USvw7ZyB8GnoAgB4kpMH6X92VTQyevq3d2Eh53K+ktgFpReVMoHSVEJCAgoLC7Fw4UJx9cmWLVvU6tjY2CAtLQ2CIIhd2YmJieJ5S0tL1KxZE8ePH0fr1q0BAAUFBUhISEDTpk3180YIADBz+Y/wf6shnOyr4dHjHHy/5xSOJFzBtmUjcOPvu/h+zyl0aNkQ1S3NcO7KbXy6+Ae89YYbGtWrBQB4p4UH3F3tMWzGWkSM6ob0+0rMjt6FIf/XGnJZlVLuTqR7WY9zceOfHlIA+CvlPs4m/Q0ry6qopjDD51//jC7veMPOWoEbf9/DjGU7UMepBtr7eQAAnOyrq7VnXvXpH22utWxQy64aAKDj2w2x8n+/Yv7Xu9E9wAdZj3Px2Yqf4FSzOho/s1cUvTq4D5R+MIF6ATc3N+Tn52PZsmV4//33cfToUURHR6vVadu2Le7evYv58+ejR48e2LNnD3bv3g2F4t8hnTFjxmDevHmoV68eGjRogEWLFiEjI0PP74buPczC8Ih1uHNPCYW5CRq61cK2ZSPQztcDf6c9xMETSVi16Vc8fpKHWnbV8P473hg/KEC83shIik2Lh2PcvE0IGLQQVU3l6BP4Jj75OLAC3xVVZokX/8L7w5aKrz9d/AMAoE+gLxZO7oULV29jU+xxZD56AnsbS7zj2wCfDOusVcLfurk7vp4VjKXr9mHp+jiYmsjQ3MsV3y8dAdMSVu0RVRYSoZKtp3/eDuBt27aFt7c3oqKi1MoXL16MBQsWICMjA61bt0a/fv0wYMAAPHz4EFZWVgCeTgqfM2cOHjx4gO7du8Pd3R1fffUVbt68CeBpj9P48eOxZs0aSKVSDBo0CPfu3UNmZqbGO5ErlUpYWlrizv1MteSMiIheD0qlEnbWlsjMLJ+f40W/J/YnJsPcomztZz1Sor137XKL1RBUugTqdcUEiojo9aavBOqAjhKod5hAvVClXIVHREREVBacA0VERGRIuApPL5hAERERGRCuwtMPJlBEREQGRCJ5epS1DXoxzoEiIiIi0hJ7oIiIiAwIp0DpBxMoIiIiQ8IMSi84hEdERESkJfZAERERGRCuwtMP9kAREREZkKJVeGU9tHH48GG8//77cHBwgEQiKfaYMkEQMH36dNSsWROmpqbw9/fHlStX1Oo8ePAA/fr1g0KhgJWVFQYPHoysrCy1On/++SdatWoFExMTODk5Yf78+cVi2bp1Kxo0aAATExN4eXnh559/1joWTTCBIiIiojLJzs5GkyZNsGLFihLPz58/H0uXLkV0dDSOHz8OMzMzBAQEICcnR6zTr18/nD9/HnFxcdi1axcOHz6Mjz76SDyvVCrRsWNHODs7IyEhAQsWLEBERAS++uorsc6xY8fQp08fDB48GGfOnEG3bt3QrVs3nDt3TqtYNMFn4b0m+Cw8IqLXm76ehXfk3N86eRbe240cXypWiUSC7du3o1u3bgCe9vg4ODhg3LhxGD9+PAAgMzMTdnZ2iImJQe/evXHx4kV4enri5MmTaNasGQBgz549eO+99/D333/DwcEBq1atwqeffoq0tDTIZDIAwOTJk7Fjxw5cunQJANCrVy9kZ2dj165dYjwtWrSAt7c3oqOjNYpFU+yBIiIiMiQSHR14mpQ9e+Tm5modzo0bN5CWlgZ/f3+xzNLSEr6+voiPjwcAxMfHw8rKSkyeAMDf3x9SqRTHjx8X67Ru3VpMngAgICAASUlJePjwoVjn2fsU1Sm6jyaxaIoJFBEREZXIyckJlpaW4jF37lyt20hLSwMA2NnZqZXb2dmJ59LS0mBra6t23tjYGNWrV1erU1Ibz97jeXWePV9aLJriKjwiIiIDostVeLdu3VIbwpPL5WVq15CwB4qIiMiA6HIVnkKhUDteJoGyt7cHANy5c0et/M6dO+I5e3t7pKenq50vKCjAgwcP1OqU1Maz93henWfPlxaLpphAERERGRAdToHSCVdXV9jb22P//v1imVKpxPHjx+Hn5wcA8PPzQ0ZGBhISEsQ6Bw4cQGFhIXx9fcU6hw8fRn5+vlgnLi4O7u7uqFatmljn2fsU1Sm6jyaxaIoJFBEREZVJVlYWEhMTkZiYCODpZO3ExEQkJydDIpFg7NixmDVrFn766SecPXsWAwYMgIODg7hSz8PDA506dcLQoUNx4sQJHD16FCNHjkTv3r3h4OAAAOjbty9kMhkGDx6M8+fPY/PmzViyZAnCw8PFOMaMGYM9e/Zg4cKFuHTpEiIiInDq1CmMHDkSADSKRVOcA0VERGRIKuBZeKdOnUK7du3E10VJTXBwMGJiYjBx4kRkZ2fjo48+QkZGBt5++23s2bMHJiYm4jUbNmzAyJEj0b59e0ilUnTv3h1Lly4Vz1taWuKXX35BaGgofHx8UKNGDUyfPl1tr6i33noLGzduxNSpU/HJJ5+gXr162LFjBxo1aiTW0SQWjT4i7gP1euA+UERErzd97QP1+8UUnewD1cLDodxiNQQcwiMiIiLSEofwiIiIDMjLPMuupDboxZhAERERGZAKmAJVKXEIj4iIiEhL7IEiIiIyJOyC0gsmUERERAZEl49yoefjEB4RERGRltgDRUREZEC4Ck8/mEAREREZEE6B0g8mUERERIaEGZRecA4UERERkZbYA0VERGRAuApPP5hAERERGRIdTCJn/lQ6DuERERERaYk9UERERAaEc8j1gwkUERGRIWEGpRccwiMiIiLSEnugiIiIDAhX4ekHEygiIiIDwke56AeH8IiIiIi0xB4oIiIiA8I55PrBBIqIiMiQMIPSCyZQREREBoSTyPWDc6CIiIiItMQeKCIiIgMigQ5W4ekkEsPGBIqIiMiAcAqUfnAIj4iIiEhL7IEiIiIyINxIUz+YQBERERkUDuLpA4fwiIiIiLTEHigiIiIDwiE8/WACRUREZEA4gKcfHMIjIiIi0hJ7oIiIiAwIh/D0gwkUERGRAeGz8PSDCRQREZEh4SQoveAcKCIiIiItsQeKiIjIgLADSj+YQBERERkQTiLXDw7hEREREWmJPVBEREQGhKvw9IMJFBERkSHhJCi94BAeERERkZbYA0VERGRA2AGlH0ygiIiIDAhX4ekHh/CIiIiItMQeKCIiIoNS9lV4HMQrHRMoIiIiA8IhPP3gEB4RERGRlphAEREREWmJQ3hEREQGhEN4+sEEioiIyIDwUS76wSE8IiIiIi2xB4qIiMiAcAhPP5hAERERGRA+ykU/OIRHREREpCX2QBERERkSdkHpBRMoIiIiA8JVePrBITwiIiIiLbEHioiIyIBwFZ5+MIEiIiIyIJwCpR9MoIiIiAwJMyi94BwoIiIiIi2xB4qIiMiAcBWefjCBIiIiMiCcRK4fTKBeE4IgAAAeKZUVHAkREb2Mop/fRT/Py4tSB78ndNGGoWMC9Zp49OgRAMDN1amCIyEiorJ49OgRLC0tdd6uTCaDvb096uno94S9vT1kMplO2jJEEqG8U2HSicLCQqSkpMDCwgIS9q2WO6VSCScnJ9y6dQsKhaKiwyHSOX6P658gCHj06BEcHBwglZbPGq6cnBzk5eXppC2ZTAYTExOdtGWI2AP1mpBKpXB0dKzoMCodhULBXy5k0Pg9rl/l0fP0LBMTEyY9esJtDIiIiIi0xASKiIiISEtMoIhKIJfLMWPGDMjl8ooOhahc8HucqGw4iZyIiIhIS+yBIiIiItISEygiIiIiLTGBIiIiItISEyiiV5SLiwuioqIqOgyi5woJCUG3bt0qOgyiCsEEil5ZISEhkEgkmDdvnlr5jh07tN6NXdNkxMXFBRKJRO3gBqb0qin6t/Hf4+rVqxUdGlGlwQSKXmkmJib4/PPP8fDhQ73dMzIyEqmpqeJx5syZEuvl5+frLSai/+rUqZPa92lqaipcXV3V6ujqkR5EVBwTKHql+fv7w97eHnPnzn1hvW3btqFhw4aQy+VwcXHBwoULxXNt27bFX3/9hbCwMPEv9RexsLCAvb29eNjY2AAAJBIJVq1ahS5dusDMzAyzZ8+GSqXC4MGD4erqClNTU7i7u2PJkiVq7bVt2xZjx45VK+vWrRtCQkLE1+np6Xj//fdhamoKV1dXbNiwQYNPhyozuVyu9n1qb2+P9u3bY+TIkRg7dixq1KiBgIAAAMCiRYvg5eUFMzMzODk5YcSIEcjKyhLbioiIgLe3t1r7UVFRcHFxEV+rVCqEh4fDysoK1tbWmDhxIrgLDlVmTKDolWZkZIQ5c+Zg2bJl+Pvvv0usk5CQgJ49e6J37944e/YsIiIiMG3aNMTExAAAfvjhBzg6Oqr1LL2siIgIfPDBBzh79iwGDRqEwsJCODo6YuvWrbhw4QKmT5+OTz75BFu2bNGq3ZCQENy6dQu//vorvv/+e6xcuRLp6ekvHSdVXmvXroVMJsPRo0cRHR0N4OmzNJcuXYrz589j7dq1OHDgACZOnKhVuwsXLkRMTAy+/fZbHDlyBA8ePMD27dvL4y0QvR4EoldUcHCw0LVrV0EQBKFFixbCoEGDBEEQhO3btwvPfuv27dtX6NChg9q1EyZMEDw9PcXXzs7OwuLFi0u9p7OzsyCTyQQzMzPxWLJkiSAIggBAGDt2bKlthIaGCt27dxdft2nTRhgzZoxana5duwrBwcGCIAhCUlKSAEA4ceKEeP7ixYsCAI1ipsonODhYMDIyUvs+7dGjh9CmTRvhjTfeKPX6rVu3CtbW1uLrGTNmCE2aNFGrs3jxYsHZ2Vl8XbNmTWH+/Pni6/z8fMHR0VH8N0pU2RhXbPpGpJnPP/8c77zzDsaPH1/s3MWLF9G1a1e1spYtWyIqKgoqlQpGRkZa3WvChAlqw2s1atQQv27WrFmx+itWrMC3336L5ORkPHnyBHl5ecWGQ17k4sWLMDY2ho+Pj1jWoEEDWFlZaRU3VS7t2rXDqlWrxNdmZmbo06eP2vdRkX379mHu3Lm4dOkSlEolCgoKkJOTg8ePH6Nq1aql3iszMxOpqanw9fUVy4yNjdGsWTMO41GlxSE8ei20bt0aAQEBmDJlSrnfq0aNGnBzcxOPZxMZMzMztbqbNm3C+PHjMXjwYPzyyy9ITEzEwIED1SbvSqXSYr9kOAGdysrMzEzt+7RmzZpi+bNu3ryJzp07o3Hjxti2bRsSEhKwYsUKAP9OMuf3KJH2mEDRa2PevHnYuXMn4uPj1co9PDxw9OhRtbKjR4+ifv36Yu+TTCaDSqXSeUxHjx7FW2+9hREjRuCNN96Am5sbrl27plbHxsZGbd6VSqXCuXPnxNcNGjRAQUEBEhISxLKkpCRkZGToPF6qfBISElBYWIiFCxeiRYsWqF+/PlJSUtTq2NjYIC0tTS2JSkxMFL+2tLREzZo1cfz4cbHsv9+zRJUNEyh6bXh5eaFfv35YunSpWvm4ceOwf/9+fPbZZ7h8+TLWrl2L5cuXqw33ubi44PDhw7h9+zbu3buns5jq1auHU6dOYe/evbh8+TKmTZuGkydPqtV55513EBsbi9jYWFy6dAnDhw9XS47c3d3RqVMnfPzxxzh+/DgSEhIwZMgQmJqa6ixOqrzc3NyQn5+PZcuW4fr161i/fr04ubxI27ZtcffuXcyfPx/Xrl3DihUrsHv3brU6Y8aMwbx587Bjxw5cunQJI0aMYJJPlRoTKHqtREZGorCwUK2sadOm2LJlCzZt2oRGjRph+vTpiIyMVJvHFBkZiZs3b6Ju3britgS68PHHHyMoKAi9evWCr68v7t+/jxEjRqjVGTRoEIKDgzFgwAC0adMGderUQbt27dTqrFmzBg4ODmjTpg2CgoLw0UcfwdbWVmdxUuXVpEkTLFq0CJ9//jkaNWqEDRs2FNsWxMPDAytXrsSKFSvQpEkTnDhxoth8w3HjxqF///4IDg6Gn58fLCws8MEHH+jzrRC9UiQCZwASERERaYU9UERERERaYgJFREREpCUmUERERERaYgJFREREpCUmUERERERaYgJFREREpCUmUERERERaYgJFRBoLCQlBt27dxNdt27bF2LFj9R7HwYMHIZFIXrgTtkQiwY4dOzRuMyIiQquHQJfk5s2bkEgkao9BISLDxASK6DUXEhICiUQCiUQCmUwGNzc3REZGoqCgoNzv/cMPP+Czzz7TqK4mSQ8R0evCuKIDIKKy69SpE9asWYPc3Fz8/PPPCA0NRZUqVTBlypRidfPy8iCTyXRy3+rVq+ukHSKi1w17oIgMgFwuh729PZydnTF8+HD4+/vjp59+AvDvsNvs2bPh4OAAd3d3AMCtW7fQs2dPWFlZoXr16ujatStu3rwptqlSqRAeHg4rKytYW1tj4sSJ+O+Tn/47hJebm4tJkybByckJcrkcbm5u+Oabb3Dz5k3x+X/VqlWDRCIRn1VYWFiIuXPnwtXVFaampmjSpAm+//57tfv8/PPPqF+/PkxNTdGuXTu1ODU1adIk1K9fH1WrVkWdOnUwbdo05OfnF6v35ZdfwsnJCVWrVkXPnj2RmZmpdn716tXw8PCAiYkJGjRogJUrV2odCxG9/phAERkgU1NT5OXlia/379+PpKQkxMXFYdeuXcjPz0dAQAAsLCzw22+/4ejRozA3N0enTp3E6xYuXIiYmBh8++23OHLkCB48eIDt27e/8L4DBgzA//73PyxduhQXL17El19+CXNzczg5OWHbtm0AgKSkJKSmpmLJkiUAgLlz52LdunWIjo7G+fPnERYWhg8//BCHDh0C8DTRCwoKwvvvv4/ExEQMGTIEkydP1vozsbCwQExMDC5cuIAlS5bg66+/xuLFi9XqXL16FVu2bMHOnTuxZ88enDlzRu3h0Bs2bMD06dMxe/ZsXLx4EXPmzMG0adOwdu1areMhotecQESvteDgYKFr166CIAhCYWGhEBcXJ8jlcmH8+PHieTs7OyE3N1e8Zv369YK7u7tQWFgoluXm5gqmpqbC3r17BUEQhJo1awrz588Xz+fn5wuOjo7ivQRBENq0aSOMGTNGEARBSEpKEgAIcXFxJcb566+/CgCEhw8fimU5OTlC1apVhWPHjqnVHTx4sNCnTx9BEARhypQpgqenp9r5SZMmFWvrvwAI27dvf+75BQsWCD4+PuLrGTNmCEZGRsLff/8tlu3evVuQSqVCamqqIAiCULduXWHjxo1q7Xz22WeCn5+fIAiCcOPGDQGAcObMmefel4gMA+dAERmAXbt2wdzcHPn5+SgsLETfvn0REREhnvfy8lKb9/THH3/g6tWrsLCwUGsnJycH165dQ2ZmJlJTU+Hr6yueMzY2RrNmzYoN4xVJTEyEkZER2rRpo3HcV69exePHj9GhQwe18ry8PLzxxhsAgIsXL6rFAQB+fn4a36PI5s2bsXTpUly7dg1ZWVkoKCiAQqFQq1O7dm3UqlVL7T6FhYVISkqChYUFrl27hsGDB2Po0KFinYKCAlhaWmodDxG93phAERmAdu3aYdWqVZDJZHBwcICxsfo/bTMzM7XXWVlZ8PHxwYYNG4q1ZWNj81IxmJqaan1NVlYWACA2NlYtcQGezuvSlfj4ePTr1w8zZ85EQEAALC0tsWnTJixcuFDrWL/++utiCZ2RkZHOYiWi1wMTKCIDYGZmBjc3N43rN23aFJs3b4atrW2xXpgiNWvWxPHjx9G6dWsAT3taEhIS0LRp0xLre3l5obCwEIcOHYK/v3+x80U9YCqVSizz9PSEXC5HcnLyc3uuPDw8xAnxRX7//ffS3+Qzjh07BmdnZ3z66adi2V9//VWsXnJyMlJSUuDg4CDeRyqVwt3dHXZ2dnBwcMD169fRr18/re5PRIaHk8iJKqF+/fqhRo0a6Nq1K3777TfcuHEDBw8exOjRo/H3338DAMaMGYN58+Zhx44duHTpEkaMGPHCPZxcXFwQHByMQYMGYceOHWKbW7ZsAQA4OztDIpFg165duHv3LrKysmBhYYHx48cjLCwMa9euxbVr13D69GksW7ZMnJg9bNgwXLlyBRMmTEBSUhI2btyImJgYrd5vvXr1kJycjE2bNuHatWtYunRpiRPiTUxMEBwcjD/++AO//fYbRo8ejZ49e8Le3h4AMHPmTMydOxdLly7F5cuXcfbsWaxZswaLFi3SKh4iev0xgSKqhKpWrYrDhw+jdu3aCAoKgoeHBwYPHoycnByxR2rcuHHo378/goOD4efnBwsLC3zwwQcvbHfVqlXo0aMHRowYgQYNGmDo0KHIzs4GANSqVQszZ87E5MmTYWdnh5EjRwIAPvvsM0ybNg1z586Fh4cHOnXqhNjYWLi6ugJ4Oi9p27Zt2LFjB5o0aYLo6GjMmTNHq/fbpUsXhIWFYeTIkfD29saxY8cwbdq0YvXc3NwQFBSE9957Dx07dkTjxo3VtikYMmQIVq9ejTVr1sDLywtt2rRBTEyMGCsRVR4S4XkzQomIiIioROyBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLf0/xWrNfra3A5AAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Display confusion matrix\n",
    "cm = confusion_matrix(y_test, y_pred)\n",
    "disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Not Fraud', 'Fraud'])\n",
    "disp.plot(cmap=plt.cm.Blues)\n",
    "plt.title('Confusion Matrix')\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Model Export\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model and scaler saved successfully!\n"
     ]
    }
   ],
   "source": [
    "# Save the model\n",
    "joblib.dump(model, 'cc_fraud_model.pkl')\n",
    "\n",
    "# Save the scaler\n",
    "joblib.dump(scaler, 'cc_fraud_scaler.pkl')\n",
    "\n",
    "print(\"Model and scaler saved successfully!\")\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}