Spaces:
Running
Running
File size: 43,744 Bytes
54853c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# This is fraud Detection Application\n",
"### This model uses Random Forest Algorithim for Fraud Classification\n",
"#### This model utilizes dataset from kaggle"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### This Model is comprised of the following steps:\n",
"\n",
"1. Library Imports\n",
"2. Data Loading\n",
"3. Data Preprocessing\n",
"4. Model Training\n",
"5. Class Imbalance Handling\n",
"6. Model Export"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Library Imports"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt\n",
"from datasets import load_dataset\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, ConfusionMatrixDisplay\n",
"from sklearn.model_selection import train_test_split\n",
"import joblib"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Load"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"dataset = load_dataset(\"Nooha/cc_fraud_detection_dataset\")\n",
"df = pd.DataFrame(dataset['train'])"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset Preview:\n",
" ssn cc_num first last gender city state \\\n",
"0 367-85-9826 4361337605230458 Kristie Davis F Chandler OK \n",
"1 367-85-9826 4361337605230458 Kristie Davis F Chandler OK \n",
"2 367-85-9826 4361337605230458 Kristie Davis F Chandler OK \n",
"3 367-85-9826 4361337605230458 Kristie Davis F Chandler OK \n",
"4 367-85-9826 4361337605230458 Kristie Davis F Chandler OK \n",
"\n",
" zip city_pop job dob acct_num \\\n",
"0 74834 7590 Chief Strategy Officer 1987-06-12 349734538563 \n",
"1 74834 7590 Chief Strategy Officer 1987-06-12 349734538563 \n",
"2 74834 7590 Chief Strategy Officer 1987-06-12 349734538563 \n",
"3 74834 7590 Chief Strategy Officer 1987-06-12 349734538563 \n",
"4 74834 7590 Chief Strategy Officer 1987-06-12 349734538563 \n",
"\n",
" trans_num trans_date trans_time unix_time \\\n",
"0 c036244703adb9d5392f4027d9d4b38d 2021-07-31 02:30:01 1627678801 \n",
"1 42f000b0b3b0ef534e5b8ef9ec1db13a 2021-08-01 22:37:41 1627837661 \n",
"2 543037b1baf088961e58d00b705f4bcc 2021-08-01 23:02:09 1627839129 \n",
"3 00a4e08643edebf9277c2967676f6a26 2021-08-01 22:27:24 1627837044 \n",
"4 492c4412815306718f686fc5b459a285 2021-12-02 02:28:51 1638392331 \n",
"\n",
" category amt is_fraud merchant \n",
"0 grocery_pos 337.54 1 fraud_Kovacek \n",
"1 personal_care 21.13 1 fraud_Bradtke \n",
"2 personal_care 22.61 1 fraud_Kozey-Kuhlman \n",
"3 health_fitness 17.32 1 fraud_Hills \n",
"4 misc_pos 75.82 0 fraud_Kemmer-Buckridge \n"
]
}
],
"source": [
"# Display the first few rows of the dataset\n",
"print(\"Dataset Preview:\")\n",
"print(df.head())"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Dataset Information:\n",
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 2646694 entries, 0 to 2646693\n",
"Data columns (total 20 columns):\n",
" # Column Dtype \n",
"--- ------ ----- \n",
" 0 ssn object \n",
" 1 cc_num int64 \n",
" 2 first object \n",
" 3 last object \n",
" 4 gender object \n",
" 5 city object \n",
" 6 state object \n",
" 7 zip int64 \n",
" 8 city_pop int64 \n",
" 9 job object \n",
" 10 dob object \n",
" 11 acct_num int64 \n",
" 12 trans_num object \n",
" 13 trans_date object \n",
" 14 trans_time object \n",
" 15 unix_time int64 \n",
" 16 category object \n",
" 17 amt float64\n",
" 18 is_fraud int64 \n",
" 19 merchant object \n",
"dtypes: float64(1), int64(6), object(13)\n",
"memory usage: 403.9+ MB\n",
"None\n"
]
}
],
"source": [
"# Display dataset information\n",
"print(\"\\nDataset Information:\")\n",
"print(df.info())\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Preprocessing"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Missing Values:\n",
"ssn 0\n",
"cc_num 0\n",
"first 0\n",
"last 0\n",
"gender 0\n",
"city 0\n",
"state 0\n",
"zip 0\n",
"city_pop 0\n",
"job 0\n",
"dob 0\n",
"acct_num 0\n",
"trans_num 0\n",
"trans_date 0\n",
"trans_time 0\n",
"unix_time 0\n",
"category 0\n",
"amt 0\n",
"is_fraud 0\n",
"merchant 0\n",
"dtype: int64\n"
]
}
],
"source": [
"# Check for missing values\n",
"print(\"Missing Values:\")\n",
"print(df.isnull().sum())"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# Drop non-numeric columns (if any)\n",
"numeric_df = df.select_dtypes(include=['number'])\n",
"\n",
"# Ensure the target column 'is_fraud' is included\n",
"if 'is_fraud' not in numeric_df.columns:\n",
" numeric_df['is_fraud'] = df['is_fraud']\n",
"\n",
"# Separate features and target\n",
"X = numeric_df.drop(columns=['is_fraud'])\n",
"y = numeric_df['is_fraud']"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Shape of Features (X): (2646694, 6)\n",
"Shape of Target (y): (2646694,)\n"
]
}
],
"source": [
"# Display the shape of the dataset\n",
"print(\"\\nShape of Features (X):\", X.shape)\n",
"print(\"Shape of Target (y):\", y.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Feature Scaling"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Scaled Features:\n",
"[[-0.31022966 0.75530067 -0.4848491 -0.49208358 -1.12618154 1.60692892]\n",
" [-0.31022966 0.75530067 -0.4848491 -0.49208358 -1.12037479 -0.29432497]\n",
" [-0.31022966 0.75530067 -0.4848491 -0.49208358 -1.12032113 -0.2854319 ]\n",
" [-0.31022966 0.75530067 -0.4848491 -0.49208358 -1.12039735 -0.31721862]\n",
" [-0.31022966 0.75530067 -0.4848491 -0.49208358 -0.73457409 0.03429794]]\n"
]
}
],
"source": [
"# Initialize the scaler\n",
"scaler = StandardScaler()\n",
"\n",
"# Scale the features\n",
"X_scaled = scaler.fit_transform(X)\n",
"\n",
"print(\"Scaled Features:\")\n",
"print(X_scaled[:5])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Data Splitting"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# Split the dataset\n",
"X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Shape of X_train: (2117355, 6)\n",
"Shape of X_test: (529339, 6)\n",
"Shape of y_train: (2117355,)\n",
"Shape of y_test: (529339,)\n"
]
}
],
"source": [
"# Display the shape of the splits\n",
"print(\"Shape of X_train:\", X_train.shape)\n",
"print(\"Shape of X_test:\", X_test.shape)\n",
"print(\"Shape of y_train:\", y_train.shape)\n",
"print(\"Shape of y_test:\", y_test.shape)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Training"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model training completed!\n"
]
}
],
"source": [
"# Initialize the Random Forest model\n",
"model = RandomForestClassifier(\n",
" n_estimators=100,\n",
" max_depth=10,\n",
" random_state=42,\n",
" class_weight='balanced' # Handle class imbalance\n",
")\n",
"\n",
"# Train the model\n",
"model.fit(X_train, y_train)\n",
"\n",
"# Display training completion message\n",
"print(\"Model training completed!\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Evaluation"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"# Make predictions\n",
"y_pred = model.predict(X_test)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.9615\n"
]
}
],
"source": [
"# Display accuracy\n",
"accuracy = accuracy_score(y_test, y_pred)\n",
"print(f\"Accuracy: {accuracy:.4f}\")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Classification Report:\n",
" precision recall f1-score support\n",
"\n",
" Not Fraud 1.00 0.96 0.98 527441\n",
" Fraud 0.07 0.82 0.13 1898\n",
"\n",
" accuracy 0.96 529339\n",
" macro avg 0.54 0.89 0.56 529339\n",
"weighted avg 1.00 0.96 0.98 529339\n",
"\n"
]
}
],
"source": [
"# Display classification report\n",
"print(\"\\nClassification Report:\")\n",
"print(classification_report(y_test, y_pred, target_names=['Not Fraud', 'Fraud']))"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWRpJREFUeJzt3XlYVGX/BvB7BpwBgQFFFhEEFEVQlERDMrdEsTA19OeaglupuIF7uSC5pam4U1mipq9LpqWkhpqaSi4o5Yp7mIC4wQjKNpzfH8bJCZQZGQYd7k/XuV7mOc95znfmRfjybEciCIIAIiIiItKYtKIDICIiInrdMIEiIiIi0hITKCIiIiItMYEiIiIi0hITKCIiIiItMYEiIiIi0hITKCIiIiItMYEiIiIi0hITKCIiIiItMYEiqsSuXLmCjh07wtLSEhKJBDt27NBp+zdv3oREIkFMTIxO232dtW3bFm3btq3oMIiojJhAEVWwa9eu4eOPP0adOnVgYmIChUKBli1bYsmSJXjy5Em53js4OBhnz57F7NmzsX79ejRr1qxc76dPISEhkEgkUCgUJX6OV65cgUQigUQiwRdffKF1+ykpKYiIiEBiYqIOoiWi141xRQdAVJnFxsbi//7v/yCXyzFgwAA0atQIeXl5OHLkCCZMmIDz58/jq6++Kpd7P3nyBPHx8fj0008xcuTIcrmHs7Mznjx5gipVqpRL+6UxNjbG48ePsXPnTvTs2VPt3IYNG2BiYoKcnJyXajslJQUzZ86Ei4sLvL29Nb7ul19+ean7EdGrhQkUUQW5ceMGevfuDWdnZxw4cAA1a9YUz4WGhuLq1auIjY0tt/vfvXsXAGBlZVVu95BIJDAxMSm39ksjl8vRsmVL/O9//yuWQG3cuBGBgYHYtm2bXmJ5/PgxqlatCplMppf7EVH54hAeUQWZP38+srKy8M0336glT0Xc3NwwZswY8XVBQQE+++wz1K1bF3K5HC4uLvjkk0+Qm5urdp2Liws6d+6MI0eO4M0334SJiQnq1KmDdevWiXUiIiLg7OwMAJgwYQIkEglcXFwAPB36Kvr6WREREZBIJGplcXFxePvtt2FlZQVzc3O4u7vjk08+Ec8/bw7UgQMH0KpVK5iZmcHKygpdu3bFxYsXS7zf1atXERISAisrK1haWmLgwIF4/Pjx8z/Y/+jbty92796NjIwMsezkyZO4cuUK+vbtW6z+gwcPMH78eHh5ecHc3BwKhQLvvvsu/vjjD7HOwYMH0bx5cwDAwIEDxaHAovfZtm1bNGrUCAkJCWjdujWqVq0qfi7/nQMVHBwMExOTYu8/ICAA1apVQ0pKisbvlYj0hwkUUQXZuXMn6tSpg7feekuj+kOGDMH06dPRtGlTLF68GG3atMHcuXPRu3fvYnWvXr2KHj16oEOHDli4cCGqVauGkJAQnD9/HgAQFBSExYsXAwD69OmD9evXIyoqSqv4z58/j86dOyM3NxeRkZFYuHAhunTpgqNHj77wun379iEgIADp6emIiIhAeHg4jh07hpYtW+LmzZvF6vfs2ROPHj3C3Llz0bNnT8TExGDmzJkaxxkUFASJRIIffvhBLNu4cSMaNGiApk2bFqt//fp17NixA507d8aiRYswYcIEnD17Fm3atBGTGQ8PD0RGRgIAPvroI6xfvx7r169H69atxXbu37+Pd999F97e3oiKikK7du1KjG/JkiWwsbFBcHAwVCoVAODLL7/EL7/8gmXLlsHBwUHj90pEeiQQkd5lZmYKAISuXbtqVD8xMVEAIAwZMkStfPz48QIA4cCBA2KZs7OzAEA4fPiwWJaeni7I5XJh3LhxYtmNGzcEAMKCBQvU2gwODhacnZ2LxTBjxgzh2R8ZixcvFgAId+/efW7cRfdYs2aNWObt7S3Y2toK9+/fF8v++OMPQSqVCgMGDCh2v0GDBqm1+cEHHwjW1tbPveez78PMzEwQBEHo0aOH0L59e0EQBEGlUgn29vbCzJkzS/wMcnJyBJVKVex9yOVyITIyUiw7efJksfdWpE2bNgIAITo6usRzbdq0USvbu3evAECYNWuWcP36dcHc3Fzo1q1bqe+RiCoOe6CIKoBSqQQAWFhYaFT/559/BgCEh4erlY8bNw4Ais2V8vT0RKtWrcTXNjY2cHd3x/Xr11865v8qmjv1448/orCwUKNrUlNTkZiYiJCQEFSvXl0sb9y4MTp06CC+z2cNGzZM7XWrVq1w//598TPURN++fXHw4EGkpaXhwIEDSEtLK3H4Dng6b0oqffqjUaVS4f79++Lw5OnTpzW+p1wux8CBAzWq27FjR3z88ceIjIxEUFAQTExM8OWXX2p8LyLSPyZQRBVAoVAAAB49eqRR/b/++gtSqRRubm5q5fb29rCyssJff/2lVl67du1ibVSrVg0PHz58yYiL69WrF1q2bIkhQ4bAzs4OvXv3xpYtW16YTBXF6e7uXuych4cH7t27h+zsbLXy/76XatWqAYBW7+W9996DhYUFNm/ejA0bNqB58+bFPssihYWFWLx4MerVqwe5XI4aNWrAxsYGf/75JzIzMzW+Z61atbSaMP7FF1+gevXqSExMxNKlS2Fra6vxtUSkf0ygiCqAQqGAg4MDzp07p9V1/53E/TxGRkYllguC8NL3KJqfU8TU1BSHDx/Gvn370L9/f/z555/o1asXOnToUKxuWZTlvRSRy+UICgrC2rVrsX379uf2PgHAnDlzEB4ejtatW+O7777D3r17ERcXh4YNG2rc0wY8/Xy0cebMGaSnpwMAzp49q9W1RKR/TKCIKkjnzp1x7do1xMfHl1rX2dkZhYWFuHLlilr5nTt3kJGRIa6o04Vq1aqprVgr8t9eLgCQSqVo3749Fi1ahAsXLmD27Nk4cOAAfv311xLbLoozKSmp2LlLly6hRo0aMDMzK9sbeI6+ffvizJkzePToUYkT74t8//33aNeuHb755hv07t0bHTt2hL+/f7HPRNNkVhPZ2dkYOHAgPD098dFHH2H+/Pk4efKkztonIt1jAkVUQSZOnAgzMzMMGTIEd+7cKXb+2rVrWLJkCYCnQ1AAiq2UW7RoEQAgMDBQZ3HVrVsXmZmZ+PPPP8Wy1NRUbN++Xa3egwcPil1btKHkf7dWKFKzZk14e3tj7dq1agnJuXPn8Msvv4jvszy0a9cOn332GZYvXw57e/vn1jMyMirWu7V161bcvn1brawo0Ssp2dTWpEmTkJycjLVr12LRokVwcXFBcHDwcz9HIqp43EiTqILUrVsXGzduRK9eveDh4aG2E/mxY8ewdetWhISEAACaNGmC4OBgfPXVV8jIyECbNm1w4sQJrF27Ft26dXvuEvmX0bt3b0yaNAkffPABRo8ejcePH2PVqlWoX7++2iTqyMhIHD58GIGBgXB2dkZ6ejpWrlwJR0dHvP32289tf8GCBXj33Xfh5+eHwYMH48mTJ1i2bBksLS0RERGhs/fxX1KpFFOnTi21XufOnREZGYmBAwfirbfewtmzZ7FhwwbUqVNHrV7dunVhZWWF6OhoWFhYwMzMDL6+vnB1ddUqrgMHDmDlypWYMWOGuK3CmjVr0LZtW0ybNg3z58/Xqj0i0pMKXgVIVOldvnxZGDp0qODi4iLIZDLBwsJCaNmypbBs2TIhJydHrJefny/MnDlTcHV1FapUqSI4OTkJU6ZMUasjCE+3MQgMDCx2n/8un3/eNgaCIAi//PKL0KhRI0Emkwnu7u7Cd999V2wbg/379wtdu3YVHBwcBJlMJjg4OAh9+vQRLl++XOwe/13qv2/fPqFly5aCqampoFAohPfff1+4cOGCWp2i+/13m4Q1a9YIAIQbN2489zMVBPVtDJ7nedsYjBs3TqhZs6ZgamoqtGzZUoiPjy9x+4Eff/xR8PT0FIyNjdXeZ5s2bYSGDRuWeM9n21EqlYKzs7PQtGlTIT8/X61eWFiYIJVKhfj4+Be+ByKqGBJB0GImJhERERFxDhQRERGRtphAEREREWmJCRQRERGRlphAEREREWmJCRQRERGRlphAEREREWmJG2m+JgoLC5GSkgILCwudPkKCiIj0QxAEPHr0CA4ODpBKy6f/IicnB3l5eTppSyaTwcTERCdtGSImUK+JlJQUODk5VXQYRERURrdu3YKjo6PO283JyYGphTVQ8Fgn7dnb2+PGjRtMop6DCdRrwsLCAgAg8wyGxEhWwdEQlY/LcZ9XdAhE5ebRIyUa1XMRf57rWl5eHlDwGHLPYKCsvydUeUi7sBZ5eXkaJVARERGYOXOmWpm7uzsuXboE4GlyN27cOGzatAm5ubkICAjAypUrYWdnJ9ZPTk7G8OHD8euvv8Lc3BzBwcGYO3cujI3/TVUOHjyI8PBwnD9/Hk5OTpg6dar4yKsiK1aswIIFC5CWloYmTZpg2bJlePPNN8XzmsSiCSZQr4miYTuJkYwJFBkshUJR0SEQlbtyn4ZhbFLm3xOCRPshxoYNG2Lfvn3/hvFM4hMWFobY2Fhs3boVlpaWGDlyJIKCgnD06FEAgEqlQmBgIOzt7XHs2DGkpqZiwIABqFKlCubMmQMAuHHjBgIDAzFs2DBs2LAB+/fvx5AhQ1CzZk0EBAQAADZv3ozw8HBER0fD19cXUVFRCAgIQFJSEmxtbTWKRVN8lMtrQqlUwtLSEnKvoUygyGClHltS0SEQlRulUgln++rIzMwslz8WxN8TTT6GxEheprYEVS5y//hS41gjIiKwY8cOJCYmFjuXmZkJGxsbbNy4ET169AAAXLp0CR4eHoiPj0eLFi2we/dudO7cGSkpKWJPUHR0NCZNmoS7d+9CJpNh0qRJiI2Nxblz58S2e/fujYyMDOzZswcA4Ovri+bNm2P58uUAns4fdnJywqhRozB58mSNYtEUV+EREREZEolUN4eWrly5AgcHB9SpUwf9+vVDcnIyACAhIQH5+fnw9/cX6zZo0AC1a9dGfHw8ACA+Ph5eXl5qw2gBAQFQKpU4f/68WOfZNorqFLWRl5eHhIQEtTpSqRT+/v5iHU1i0RSH8IiIiKhESqVS7bVcLodcXrx3y9fXFzExMXB3d0dqaipmzpyJVq1a4dy5c0hLS4NMJoOVlZXaNXZ2dkhLSwMApKWlFZuDVPS6tDpKpRJPnjzBw4cPoVKpSqxTNBdLk1g0xQSKiIjIkEgkT4+ytgEUW/09Y8YMREREFKv+7rvvil83btwYvr6+cHZ2xpYtW2Bqalq2WF5RTKCIiIgMyUsOwRVrA0+3XHh2DlRJvU8lsbKyQv369XH16lV06NABeXl5yMjIUOv5uXPnDuzt7QE83TLhxIkTam3cuXNHPFf0v0Vlz9ZRKBQwNTWFkZERjIyMSqzzbBulxaIpzoEiIiKiEikUCrVD0wQqKysL165dQ82aNeHj44MqVapg//794vmkpCQkJyfDz88PAODn54ezZ88iPT1drBMXFweFQgFPT0+xzrNtFNUpakMmk8HHx0etTmFhIfbv3y/W0SQWTbEHioiIyJDocAhPU+PHj8f7778PZ2dnpKSkYMaMGTAyMkKfPn1gaWmJwYMHIzw8HNWrV4dCocCoUaPg5+cnrnrr2LEjPD090b9/f8yfPx9paWmYOnUqQkNDxaRt2LBhWL58OSZOnIhBgwbhwIED2LJlC2JjY8U4wsPDERwcjGbNmuHNN99EVFQUsrOzMXDgQADQKBZNMYEiIiIyKDoYwtNygOrvv/9Gnz59cP/+fdjY2ODtt9/G77//DhsbGwDA4sWLIZVK0b17d7XNK4sYGRlh165dGD58OPz8/GBmZobg4GBERkaKdVxdXREbG4uwsDAsWbIEjo6OWL16tbgHFAD06tULd+/exfTp05GWlgZvb2/s2bNHbWJ5abFoivtAvSa4DxRVBtwHigyZ3vaB8hkDiXEZ94EqyEVuwpJyi9UQsAeKiIjIkFTAEF5lxASKiIjIkOhwFR49Hz8hIiIiIi2xB4qIiMiQcAhPL5hAERERGRIO4ekFEygiIiJDwh4ovWCKSURERKQl9kAREREZEg7h6QUTKCIiIkMikegggeIQXmmYYhIRERFpiT1QREREhkQqeXqUtQ16ISZQREREhoRzoPSCnxARERGRltgDRUREZEi4D5ReMIEiIiIyJBzC0wt+QkRERERaYg8UERGRIeEQnl4wgSIiIjIkHMLTCyZQREREhoQ9UHrBFJOIiIhIS+yBIiIiMiQcwtMLJlBERESGhEN4esEUk4iIiEhL7IEiIiIyKDoYwmP/SqmYQBERERkSDuHpBVNMIiIiIi2xB4qIiMiQSCQ6WIXHHqjSMIEiIiIyJNzGQC/4CRERERFpiT1QREREhoSTyPWCCRQREZEh4RCeXjCBIiIiMiTsgdILpphEREREWmIPFBERkSHhEJ5eMIEiIiIyJBzC0wummERERERaYg8UERGRAZFIJJCwB6rcMYEiIiIyIEyg9INDeERERERaYg8UERGRIZH8c5S1DXohJlBEREQGhEN4+sEhPCIiIiItsQeKiIjIgLAHSj+YQBERERkQJlD6wQSKiIjIgDCB0g/OgSIiIiLSEnugiIiIDAm3MdALJlBEREQGhEN4+sEhPCIiIiItsQeKiIjIgEgk0EEPlG5iMWRMoIiIiAyIBDoYwmMGVSoO4RERERFpiT1QREREBoSTyPWDCRQREZEh4TYGesEhPCIiIiItsQeKiIjIkOhgCE/gEF6pmEAREREZEF3MgSr7Kj7DxwSKiIjIgDCB0g/OgSIiIiLSEnugiIiIDAlX4ekFEygiIiIDwiE8/eAQHhEREZGWmEAREREZkKIeqLIeL2vevHmQSCQYO3asWJaTk4PQ0FBYW1vD3Nwc3bt3x507d9SuS05ORmBgIKpWrQpbW1tMmDABBQUFanUOHjyIpk2bQi6Xw83NDTExMcXuv2LFCri4uMDExAS+vr44ceKE2nlNYtEEEygiIiIDUpEJ1MmTJ/Hll1+icePGauVhYWHYuXMntm7dikOHDiElJQVBQUHieZVKhcDAQOTl5eHYsWNYu3YtYmJiMH36dLHOjRs3EBgYiHbt2iExMRFjx47FkCFDsHfvXrHO5s2bER4ejhkzZuD06dNo0qQJAgICkJ6ernEsmpIIgiBofRXpnVKphKWlJeReQyExklV0OETlIvXYkooOgajcKJVKONtXR2ZmJhQKRbm0b2lpCdvgdZDKqpaprcK8x0hfO0CrWLOystC0aVOsXLkSs2bNgre3N6KiopCZmQkbGxts3LgRPXr0AABcunQJHh4eiI+PR4sWLbB792507twZKSkpsLOzAwBER0dj0qRJuHv3LmQyGSZNmoTY2FicO3dOvGfv3r2RkZGBPXv2AAB8fX3RvHlzLF++/On7KCyEk5MTRo0ahcmTJ2sUi6bYA0VERGRAdNkDpVQq1Y7c3Nzn3jc0NBSBgYHw9/dXK09ISEB+fr5aeYMGDVC7dm3Ex8cDAOLj4+Hl5SUmTwAQEBAApVKJ8+fPi3X+23ZAQIDYRl5eHhISEtTqSKVS+Pv7i3U0iUVTTKCIiIgMiURHBwAnJydYWlqKx9y5c0u85aZNm3D69OkSz6elpUEmk8HKykqt3M7ODmlpaWKdZ5OnovNF515UR6lU4smTJ7h37x5UKlWJdZ5to7RYNMVtDIiIiKhEt27dUhvCk8vlJdYZM2YM4uLiYGJios/wKhR7oIiIiAyILofwFAqF2lFSApWQkID09HQ0bdoUxsbGMDY2xqFDh7B06VIYGxvDzs4OeXl5yMjIULvuzp07sLe3BwDY29sXWwlX9Lq0OgqFAqampqhRowaMjIxKrPNsG6XFoikmUERERAZE36vw2rdvj7NnzyIxMVE8mjVrhn79+olfV6lSBfv37xevSUpKQnJyMvz8/AAAfn5+OHv2rNpqubi4OCgUCnh6eop1nm2jqE5RGzKZDD4+Pmp1CgsLsX//frGOj49PqbFoikN4REREBkTfO5FbWFigUaNGamVmZmawtrYWywcPHozw8HBUr14dCoUCo0aNgp+fn7jqrWPHjvD09ET//v0xf/58pKWlYerUqQgNDRV7vYYNG4bly5dj4sSJGDRoEA4cOIAtW7YgNjZWvG94eDiCg4PRrFkzvPnmm4iKikJ2djYGDhwIALC0tCw1Fk0xgSIiIqJytXjxYkilUnTv3h25ubkICAjAypUrxfNGRkbYtWsXhg8fDj8/P5iZmSE4OBiRkZFiHVdXV8TGxiIsLAxLliyBo6MjVq9ejYCAALFOr169cPfuXUyfPh1paWnw9vbGnj171CaWlxaLprgP1GuC+0BRZcB9oMiQ6WsfKIehG3WyD1TK133LLVZDwB4oIiIiA8KHCesHJ5ETERERaYk9UBXIxcUFY8eOVXvgImlm0tD3MPmj99TKLt9Mg+//zQIAyGXGmDU2CEEdfCCTGePA7xcx/vPNuPvgEQCgT2dfrJzRv8S263WcjHsPs9TKfBvXwa4vx+Di9VS07jdP7dyQ/2uNUR+2h621Aueu3MakBVtx+sJf4vmd0WPwtk89tWvWbDuC8HmbXu7NU6WzdF0cfj74B64mp8NEVgXNvFwxdcT7cHO2K/3ilyQIAhas3o0NP8VD+egJmjd2xbwJ/4c6TrbF6ubmFSBw6CKcv3IbcTET0Ki+Y7nFRaVjD5R+VGgPVEhICCQSCebNU/+FtGPHDq3/z3NxcUFUVJRG9f67VNPRkf/YX0cXr6XAvdMU8Xh3yGLx3Jyw7ujUqhFCpnyDzh9Hwb6GJdbPHyKe3x53Wu1a905TsC/+Ao4kXCmWPCnMTbFqZn8cOnm5WAwfdGiKWWM/wOerd6Nt/89x7sptbFsWihrVzNXqxWw/qnavGct26PbDIIMWf+YqBnZvhdivwrB5yQgUFKjQe+wqPH7y/MdqlOaL1bsxZtaG555f8d1+fLP1MD6f0BOxq8NQ1USGPmHRyMnNL1b3sxU/wq4G58m8KiTQwTYGYAJVmgofwjMxMcHnn3+Ohw8f6u2ekZGRSE1NFY8zZ86UWC8/v/gPCnp1FKgKkX7/kXg8yMwGACjMTPBhVz98uvgH/HbqMv64dAsjI7+Db5O6aNbIBQCQk5uvdq1KJaB1s/r47sdjxe6zeEpvfL/3FE6evVHs3Ii+72DdjmPYuPN3JN1IQ/jcTXick4cPu6jvJ/IkJ0/tfo+yc3T/gZDB+t/i4egV6Av3OjXRsF4tRE3th9t3HuKPS7fEOpmPHmPc3P+h4XufoJ7/RPQYuRznr9x+qfsJgoCvtxzC2JCO6NTaC55utbB0+oe4cy8Tew6fVau7P/4CDp1IwvSR3cryFoleOxWeQPn7+8Pe3v65z9cpsm3bNjRs2BByuRwuLi5YuHCheK5t27b466+/EBYWplHXpYWFBezt7cXDxsYGwNMuy1WrVqFLly4wMzPD7NmzoVKpMHjwYLi6usLU1BTu7u5YskR9pVDbtm2LDcN169YNISEh4uv09HS8//77MDU1haurKzZseP5ffqSZOk42uPDzbJzZEYGvPguGo101AEATj9qQVTHGwRNJYt0rf93BrdQHaO7lWmJbvQPfxJOcPPx4IFGtvO/7LeBcyxqff7272DVVjI3g3cBJ7T6CIODQiaRi9/m/Ts1wNW4ejm36BNNDu8BUXuVl3zYRHmU/AQBUU/y70uqjqWtw72EWNiwchr1rxsPL3RH/N3oFHiqztW4/OeU+0u8r0apZfbFMYW6KNzydcercv39I3H2gxIR5m7Bs+oeoasLv6VeFvjfSrKwqfA6UkZER5syZg759+2L06NElDqclJCSgZ8+eiIiIQK9evXDs2DGMGDEC1tbWCAkJwQ8//IAmTZrgo48+wtChQ8sUT0REBObNm4eoqCgYGxujsLAQjo6O2Lp1K6ytrXHs2DF89NFHqFmzJnr27KlxuyEhIUhJScGvv/6KKlWqYPTo0Wo7rpJ2Es7fROjM73D1rzuwq2GJSUPfxc9fh+Gt3rNhZ61Abl4+lFlP1K5Jf6CEnXXJwwwfdvHD93tPqQ1P1HGywYzQLnjvoyioVIXFrrG2MoexsZE4r6rI3QdK1HP5d27K93tP4VbqA6TdzUTDeg6YMbIr3JxtMWDi6rJ8BFRJFRYWYnrUD2je2BUN6joAAI7/cQ1nLiTjbOxsyGVPf6zPGNUNew6fxa4Df6B/t7e0ukf6P9/TNtUt1MptqluI3++CIGDMrI3o360lvD1q41bq/bK+NdKVZx4GXKY26IUqPIECgA8++ADe3t6YMWMGvvnmm2LnFy1ahPbt22PatGkAgPr16+PChQtYsGABQkJCUL16dRgZGYk9S6WZNGkSpk6dKr6eM2cORo8eDQDo27evuGNpkZkzZ4pfu7q6Ij4+Hlu2bNE4gbp8+TJ2796NEydOoHnz5gCAb775Bh4eHs+9Jjc3F7m5/85vUCqVGt2rsth37IL49fmrKTh17ibO7oxEN/+mJc7ReJHmXq5oUKcmhs1YJ5ZJpRJ8PSsE8776GdeSy5bort1+VPz6wrUUpN1T4qdVo+FSqwZu3r5Xprap8pmy8Htcup6GH6PHiGUXrqYg+0kuPN+dolY3Jzcff/3zPfZ74jX0GxctnsvPV0EQBOz6NVEsmz+xF7oHNNMojm+2HkbW4xyMHtChDO+G6PX1SiRQAPD555/jnXfewfjx44udu3jxIrp27apW1rJlS0RFRUGlUsHIyEire02YMEFteK1GjRri182aFf/hsWLFCnz77bdITk7GkydPkJeXB29vb43vd/HiRRgbG8PHx0csa9CgAaysrJ57zdy5c9USN3oxZdYTXE1ORx0nG/x6/BLksipQmJuq9ULZVlfgzv3iiWj/rn74M+mW2nwS86omaOrpjMb1HTF/wv8BeJpUSaVS3I1fgqBRK/B74jUUFKhK+CtdgfQS7lMk4dxNAE97uJhAkTY+Wfg99h09j+0rR8PB1kosz36cCztrBbatGFXsGoW5KQCgiYcT9q2dKJZ/s+UwUu9lYOqILmKZTbWn38u2/3xP333wCHY1LMXzdx88QsN6tQAARxKuIOHcTTi3Had2v06DFyKoow+WTvuwjO+WXhZX4enHK5NAtW7dGgEBAZgyZYpaclMeatSoATc3txLPmZmZqb3etGkTxo8fj4ULF8LPzw8WFhZYsGABjh8/LtaRSqX474buZZ2APmXKFISHh4uvlUolnJycytSmITMzlcG1Vg1svncCf1xMRl5+Ado0d8fOf/66dnO2hVPN6sUmgpuZytDNvyk+W/GTWvmj7By81Xu2WtngHq3Qqll9hEz+Bn/dvo/8AhUSL91Cm+bu+PnQnwCe/tBp3bw+Vm89/NxYvf5Z4n3nXmZZ3zZVEoIg4NNF27D70J/YtmIkajtYq533cndE+oNHMDaSwqmmdYltmMplcHW0EV9bKari0eMctbIitR2sYWutwJFTl8UtCR5l5+DMhb8Q/MHbAIBZYUFqW4mk3VOiT9gqREcGo2lDl7K+ZSoDJlD68cokUAAwb948eHt7w93dXa3cw8MDR48eVSs7evQo6tevL/Y+yWQyqFQqncd09OhRvPXWWxgxYoRYdu3aNbU6NjY2SE1NFV+rVCqcO3cO7dq1A/C0t6mgoAAJCQniEF5SUhIyMjKee1+5XC4+QJGKixzzAfb8dha3Uh+gpo0lJn8UCFVhIbbtTYAyOwff/RiP2WFBeKjMxqPsHMyf8H848ed1nPqn96fIBx18YGwkxebdJ9XKBUHAxWupamV3H2QhN69ArXzlxgNYOaM/zlxMxunzNzG8TzuYmcqxYefvAACXWjXQo1MzxB09jweZ2WhUrxZmhwXh6OkrOH81pXw+HDI4U77Yiu1xp7Hm8yEwr2oi9nBamJvAVC5D6+bu8GnkgoGTv8HUEV1Qt7YN0u4pse/oebzbpjG8PWprdT+JRIKhPdsgau0vcHWyQW0Ha3z+1c+wq2GJTq29AACO9tXVrjGr+vTnlUutGmq9Y6R/EsnTo6xt0Iu9UgmUl5cX+vXrh6VLl6qVjxs3Ds2bN8dnn32GXr16IT4+HsuXL1d7+J+LiwsOHz6M3r17Qy6Xqw3LlUW9evWwbt067N27F66urli/fj1OnjwJV9d/V1m98847CA8PR2xsLOrWrYtFixapJUfu7u7o1KkTPv74Y6xatQrGxsYYO3YsTE1NdRJjZVTL1gqrZw1EdcuquPcwC8f/uI4OAxfifsbTPZw+WbwNhYKAdZ8PUdtI87/6d/XDroN/FJtwrqntcadRw8ocn3wcCFtrC5y9fBs9Rq8QJ9rmFxSg7ZvuGN67HaqaynD7zkPsPJCIL77d+/Jvniqdonl03UOXqZVHfdoXvQJ9IZFIsOGLjzHvy1iEzd6I+xlZsLG2QIsmdYsNMWsq9MP2eJyThwmfb4Yy6wnebFwHGxcNgwlXkBIBqOCHCYeEhCAjIwM7duwQy27evAl3d3fk5eWpDYtt27YN06dPx5UrV1CzZk2MGjVKbb7U77//jo8//hhJSUnIzc0tNqRW5EW7f0skEmzfvh3dunUTy3JzczFs2DBs374dEokEffr0gaWlJXbv3o3ExEQAT4frxowZg82bN8PY2BhhYWH4/fffYWVlhZiYGABAWloahgwZgn379sHOzg6zZs3CtGnTNN6JnA8TpsqADxMmQ6avhwnXGfU9pHKz0i94gcLcbFxf1oMPE36BCk2gSHNMoKgyYAJFhkxvCdTo72FUxgRKlZuN60uZQL1IhW+kSURERPS6eaXmQBEREVHZcBWefjCBIiIiMiBchacfHMIjIiIi0hJ7oIiIiAzI06cmlK0LSSjj9ZUBEygiIiIDwiE8/eAQHhEREZGW2ANFRERkQLgKTz+YQBERERkQDuHpBxMoIiIiA8IeKP3gHCgiIiIiLbEHioiIyICwB0o/mEAREREZEM6B0g8O4RERERFpiT1QREREBkQCHQzhgV1QpWECRUREZEA4hKcfHMIjIiIi0hJ7oIiIiAwIV+HpBxMoIiIiA8IhPP3gEB4RERGRltgDRUREZEA4hKcfTKCIiIgMCIfw9IMJFBERkQFhD5R+cA4UERERkZbYA0VERGRIdDCEx43IS8cEioiIyIBwCE8/OIRHREREpCX2QBERERkQrsLTDyZQREREBoRDePrBITwiIiIiLbEHioiIyIBwCE8/mEAREREZEA7h6QeH8IiIiIi0xB4oIiIiA8IeKP1gAkVERGRAOAdKP5hAERERGRD2QOkH50ARERERaYk9UERERAaEQ3j6wQSKiIjIgHAITz84hEdERESkJfZAERERGRAJdDCEp5NIDBsTKCIiIgMilUggLWMGVdbrKwMO4RERERFpiT1QREREBoSr8PSDCRQREZEB4So8/WACRUREZECkkqdHWdugF+McKCIiIiItsQeKiIjIkEh0MATHHqhSsQeKiIjIgBRNIi/roY1Vq1ahcePGUCgUUCgU8PPzw+7du8XzOTk5CA0NhbW1NczNzdG9e3fcuXNHrY3k5GQEBgaiatWqsLW1xYQJE1BQUKBW5+DBg2jatCnkcjnc3NwQExNTLJYVK1bAxcUFJiYm8PX1xYkTJ9TOaxKLJphAERERUZk4Ojpi3rx5SEhIwKlTp/DOO++ga9euOH/+PAAgLCwMO3fuxNatW3Ho0CGkpKQgKChIvF6lUiEwMBB5eXk4duwY1q5di5iYGEyfPl2sc+PGDQQGBqJdu3ZITEzE2LFjMWTIEOzdu1ess3nzZoSHh2PGjBk4ffo0mjRpgoCAAKSnp4t1SotFUxJBEISX+bBIv5RKJSwtLSH3GgqJkayiwyEqF6nHllR0CETlRqlUwtm+OjIzM6FQKMqlfUtLS3RcfABVTM3L1Fb+kyz8EvZOmWKtXr06FixYgB49esDGxgYbN25Ejx49AACXLl2Ch4cH4uPj0aJFC+zevRudO3dGSkoK7OzsAADR0dGYNGkS7t69C5lMhkmTJiE2Nhbnzp0T79G7d29kZGRgz549AABfX180b94cy5cvBwAUFhbCyckJo0aNwuTJk5GZmVlqLJpiDxQREZEBKVqFV9YDeJqUPXvk5uaWen+VSoVNmzYhOzsbfn5+SEhIQH5+Pvz9/cU6DRo0QO3atREfHw8AiI+Ph5eXl5g8AUBAQACUSqXYixUfH6/WRlGdojby8vKQkJCgVkcqlcLf31+so0ksmmICRURERCVycnKCpaWleMydO/e5dc+ePQtzc3PI5XIMGzYM27dvh6enJ9LS0iCTyWBlZaVW387ODmlpaQCAtLQ0teSp6HzRuRfVUSqVePLkCe7duweVSlVinWfbKC0WTXEVHhERkQHR5Uaat27dUhvCk8vlz73G3d0diYmJyMzMxPfff4/g4GAcOnSoTHG8yjRKoH766SeNG+zSpctLB0NERERlo8tHuRStqtOETCaDm5sbAMDHxwcnT57EkiVL0KtXL+Tl5SEjI0Ot5+fOnTuwt7cHANjb2xdbLVe0Mu7ZOv9dLXfnzh0oFAqYmprCyMgIRkZGJdZ5to3SYtGURglUt27dNGpMIpFApVJpFQAREREZnsLCQuTm5sLHxwdVqlTB/v370b17dwBAUlISkpOT4efnBwDw8/PD7NmzkZ6eDltbWwBAXFwcFAoFPD09xTo///yz2j3i4uLENmQyGXx8fLB//34xbyksLMT+/fsxcuRIANAoFk1plEAVFhZq1SgRERFVDKlEAmkZu6C0vX7KlCl49913Ubt2bTx69AgbN27EwYMHsXfvXlhaWmLw4MEIDw9H9erVoVAoMGrUKPj5+Ymr3jp27AhPT0/0798f8+fPR1paGqZOnYrQ0FBx2HDYsGFYvnw5Jk6ciEGDBuHAgQPYsmULYmNjxTjCw8MRHByMZs2a4c0330RUVBSys7MxcOBAANAoFk2VaQ5UTk4OTExMytIEERER6ZAuh/A0lZ6ejgEDBiA1NRWWlpZo3Lgx9u7diw4dOgAAFi9eDKlUiu7duyM3NxcBAQFYuXKleL2RkRF27dqF4cOHw8/PD2ZmZggODkZkZKRYx9XVFbGxsQgLC8OSJUvg6OiI1atXIyAgQKzTq1cv3L17F9OnT0daWhq8vb2xZ88etYnlpcWi8Wek7T5QKpUKc+bMQXR0NO7cuYPLly+jTp06mDZtGlxcXDB48GCtg6DScR8oqgy4DxQZMn3tA9VlxSGd7AP1U2ibcovVEGi9jcHs2bMRExOD+fPnQyb79xd5o0aNsHr1ap0GR0RERPQq0jqBWrduHb766iv069cPRkZGYnmTJk1w6dIlnQZHRERE2qmIZ+FVRlrPgbp9+7a4TPFZhYWFyM/P10lQRERE9HIqYhJ5ZaR1D5Snpyd+++23YuXff/893njjDZ0ERURERPQq07oHavr06QgODsbt27dRWFiIH374AUlJSVi3bh127dpVHjESERGRhiT/HGVtg15M6x6orl27YufOndi3bx/MzMwwffp0XLx4ETt37hSXKxIREVHFKHqUS1kPerGX2geqVatWiIuL03UsRERERK+Fl95I89SpU7h48SKAp/OifHx8dBYUERERvRyp5OlR1jboxbROoP7++2/06dMHR48eFR/El5GRgbfeegubNm2Co6OjrmMkIiIiDeliCI5DeKXTeg7UkCFDkJ+fj4sXL+LBgwd48OABLl68iMLCQgwZMqQ8YiQiIiJ6pWjdA3Xo0CEcO3YM7u7uYpm7uzuWLVuGVq1a6TQ4IiIi0h47kMqf1gmUk5NTiRtmqlQqODg46CQoIiIiejkcwtMPrYfwFixYgFGjRuHUqVNi2alTpzBmzBh88cUXOg2OiIiItFM0ibysB72YRj1Q1apVU8tGs7Oz4evrC2Pjp5cXFBTA2NgYgwYNQrdu3colUCIiIqJXhUYJVFRUVDmHQURERLrAITz90CiBCg4OLu84iIiISAf4KBf9eOmNNAEgJycHeXl5amUKhaJMARERERG96rROoLKzszFp0iRs2bIF9+/fL3ZepVLpJDAiIiLSnlQigbSMQ3Blvb4y0HoV3sSJE3HgwAGsWrUKcrkcq1evxsyZM+Hg4IB169aVR4xERESkIYlENwe9mNY9UDt37sS6devQtm1bDBw4EK1atYKbmxucnZ2xYcMG9OvXrzziJCIiInplaN0D9eDBA9SpUwfA0/lODx48AAC8/fbbOHz4sG6jIyIiIq0UrcIr60EvpnUCVadOHdy4cQMA0KBBA2zZsgXA056poocLExERUcXgEJ5+aJ1ADRw4EH/88QcAYPLkyVixYgVMTEwQFhaGCRMm6DxAIiIioleN1nOgwsLCxK/9/f1x6dIlJCQkwM3NDY0bN9ZpcERERKQdrsLTjzLtAwUAzs7OcHZ21kUsREREVEa6GIJj/lQ6jRKopUuXatzg6NGjXzoYIiIiKhs+ykU/NEqgFi9erFFjEomECRQREREZPI0SqKJVd1Txkg9+wcflEBG9hvKqGOnlPlK8xAqxEtqgFyvzHCgiIiJ6dXAITz+YZBIRERFpiT1QREREBkQiAaRchVfumEAREREZEKkOEqiyXl8ZcAiPiIiISEsvlUD99ttv+PDDD+Hn54fbt28DANavX48jR47oNDgiIiLSDh8mrB9aJ1Dbtm1DQEAATE1NcebMGeTm5gIAMjMzMWfOHJ0HSERERJorGsIr60EvpnUCNWvWLERHR+Prr79GlSpVxPKWLVvi9OnTOg2OiIiI6FWk9STypKQktG7duli5paUlMjIydBETERERvSQ+C08/tO6Bsre3x9WrV4uVHzlyBHXq1NFJUERERPRypBKJTg56Ma0TqKFDh2LMmDE4fvw4JBIJUlJSsGHDBowfPx7Dhw8vjxiJiIhIQ1IdHfRiWg/hTZ48GYWFhWjfvj0eP36M1q1bQy6XY/z48Rg1alR5xEhERET0StE6gZJIJPj0008xYcIEXL16FVlZWfD09IS5uXl5xEdERERa4Bwo/XjpnchlMhk8PT11GQsRERGVkRRln8MkBTOo0midQLVr1+6FG2wdOHCgTAERERERveq0TqC8vb3VXufn5yMxMRHnzp1DcHCwruIiIiKil8AhPP3QOoFavHhxieURERHIysoqc0BERET08vgwYf3Q2UrFDz/8EN9++62umiMiIiJ6Zb30JPL/io+Ph4mJia6aIyIiopcgkaDMk8g5hFc6rROooKAgtdeCICA1NRWnTp3CtGnTdBYYERERaY9zoPRD6wTK0tJS7bVUKoW7uzsiIyPRsWNHnQVGRERE9KrSKoFSqVQYOHAgvLy8UK1atfKKiYiIiF4SJ5Hrh1aTyI2MjNCxY0dkZGSUUzhERERUFhId/UcvpvUqvEaNGuH69evlEQsRERGVUVEPVFkPejGtE6hZs2Zh/Pjx2LVrF1JTU6FUKtUOIiIiIkOn8RyoyMhIjBs3Du+99x4AoEuXLmqPdBEEARKJBCqVSvdREhERkUY4B0o/NE6gZs6ciWHDhuHXX38tz3iIiIioDCQSyQufWatpG/RiGidQgiAAANq0aVNuwRARERG9DrTaxoAZKRER0auNQ3j6oVUCVb9+/VKTqAcPHpQpICIiInp53IlcP7RKoGbOnFlsJ3IiIiKiykarBKp3796wtbUtr1iIiIiojKQSSZkfJlzW6ysDjRMozn8iIiJ69XEOlH5ovJFm0So8IiIiospO4wSqsLCQw3dERESvOsm/E8lf9tD2UXhz585F8+bNYWFhAVtbW3Tr1g1JSUlqdXJychAaGgpra2uYm5uje/fuuHPnjlqd5ORkBAYGomrVqrC1tcWECRNQUFCgVufgwYNo2rQp5HI53NzcEBMTUyyeFStWwMXFBSYmJvD19cWJEye0jqU0Wj/KhYiIiF5dUkh0cmjj0KFDCA0Nxe+//464uDjk5+ejY8eOyM7OFuuEhYVh586d2Lp1Kw4dOoSUlBQEBQWJ51UqFQIDA5GXl4djx45h7dq1iImJwfTp08U6N27cQGBgINq1a4fExESMHTsWQ4YMwd69e8U6mzdvRnh4OGbMmIHTp0+jSZMmCAgIQHp6usaxaEIicGzutaBUKmFpaYk79zOhUCgqOhwiItKSUqmEnbUlMjPL5+d40e+JL375E6ZmFmVq60n2I4zv2PilY7179y5sbW1x6NAhtG7dGpmZmbCxscHGjRvRo0cPAMClS5fg4eGB+Ph4tGjRArt370bnzp2RkpICOzs7AEB0dDQmTZqEu3fvQiaTYdKkSYiNjcW5c+fEe/Xu3RsZGRnYs2cPAMDX1xfNmzfH8uXLATwdQXNycsKoUaMwefJkjWLRBHugiIiIqERKpVLtyM3N1ei6zMxMAED16tUBAAkJCcjPz4e/v79Yp0GDBqhduzbi4+MBAPHx8fDy8hKTJwAICAiAUqnE+fPnxTrPtlFUp6iNvLw8JCQkqNWRSqXw9/cX62gSiyaYQBERERmQolV4ZT0AwMnJCZaWluIxd+7cUu9fWFiIsWPHomXLlmjUqBEAIC0tDTKZDFZWVmp17ezskJaWJtZ5NnkqOl907kV1lEolnjx5gnv37kGlUpVY59k2SotFE1rtA0VERESvNl3uA3Xr1i21ITy5XF7qtaGhoTh37hyOHDlSphhedeyBIiIiohIpFAq1o7QEauTIkdi1axd+/fVXODo6iuX29vbIy8tDRkaGWv07d+7A3t5erPPflXBFr0uro1AoYGpqiho1asDIyKjEOs+2UVosmmACRUREZEDKuoXByzxLTxAEjBw5Etu3b8eBAwfg6uqqdt7HxwdVqlTB/v37xbKkpCQkJyfDz88PAODn54ezZ8+qrZaLi4uDQqGAp6enWOfZNorqFLUhk8ng4+OjVqewsBD79+8X62gSiyY4hEdERGRApNDBEJ6W2xiEhoZi48aN+PHHH2FhYSHOJbK0tISpqSksLS0xePBghIeHo3r16lAoFBg1ahT8/PzEVW8dO3aEp6cn+vfvj/nz5yMtLQ1Tp05FaGio2PM1bNgwLF++HBMnTsSgQYNw4MABbNmyBbGxsWIs4eHhCA4ORrNmzfDmm28iKioK2dnZGDhwoBhTabFoggkUERERlcmqVasAAG3btlUrX7NmDUJCQgAAixcvhlQqRffu3ZGbm4uAgACsXLlSrGtkZIRdu3Zh+PDh8PPzg5mZGYKDgxEZGSnWcXV1RWxsLMLCwrBkyRI4Ojpi9erVCAgIEOv06tULd+/exfTp05GWlgZvb2/s2bNHbWJ5abFogvtAvSa4DxQR0etNX/tALT9wDqbmZdwHKusRRr7TqNxiNQTsgSIiIjIgUpR9gjMnSJeOnxERERGRltgDRUREZEAkEgkkZZxEXtbrKwMmUERERAZE8s9R1jboxZhAERERGRBd7kROz8c5UERERERaYg8UERGRgWH/UfljAkVERGRAXuZRLCW1QS/GITwiIiIiLbEHioiIyIBwGwP9YAJFRERkQLgTuX7wMyIiIiLSEnugiIiIDAiH8PSDCRQREZEB4U7k+sEhPCIiIiItsQeKiIjIgHAITz+YQBERERkQrsLTDyZQREREBoQ9UPrBJJOIiIhIS+yBIiIiMiBchacfTKCIiIgMCB8mrB8cwiMiIiLSEnugiIiIDIgUEkjLOAhX1usrAyZQREREBoRDePrBITwiIiIiLbEHioiIyIBI/vmvrG3QizGBIiIiMiAcwtMPDuERERERaYk9UERERAZEooNVeBzCKx0TKCIiIgPCITz9YAJFRERkQJhA6QfnQBERERFpiT1QREREBoTbGOgHEygiIiIDIpU8PcraBr0Yh/CIiIiItMQeKCIiIgPCITz9YAJFRERkQLgKTz84hEdERESkJfZAERERGRAJyj4Exw6o0jGBIiIiMiBchacfHMIjIiIi0hJ7oCpISEgIMjIysGPHjooOpdL45vvf8O2233Ar9QEAoEEde0wY/C46tGwIAOj8cRSOnr6qdk1IUEssntJHfH0r7QHGzduMI6cuw6yqHL0DfTEjtAuMjY3090aI/nH09FUsW78Pf1xKRto9Jb5bMBSBbZuI50dErMf/Yo+rXdO+hQe+XxZarK3cvHz4h3yBc1du4/B3k+Hl7iie2x9/AfO++hmXrqdCLquCt96oi1ljg1Dbwbr83hy9NK7C049Kl0CFhIRg7dq1xcqvXLkCNze3CoiI9MXB1gozRnZFXScbCIKA/8UeR7/xX+HQd5PhUbcmACC421uY8nFn8RpTkyri1ypVIXqNXQU7awX2fjMOafcyMTxiPaoYG2F6aBe9vx+ix09y0ah+LXzYxQ/9J35dYp32fp5YMf1D8bVcVvKP/RlLf4S9jSXOXbmtVv7X7XvoN/4rjOj7Dr76LBjKrBx8smgb+k/8Goe+m6y7N0M6w1V4+lHpEigA6NSpE9asWaNWZmNjo/Y6Ly8PMplMn2FROXu3tZfa62kjuuDbbUdw6twNMYEyNZHBroaixOsP/H4RSTfSsGPFKNhaK+Dl7ohPhgUiYtmPmPzRe5BVqZT/nKgCdWjZUOxBfR65zPi539NF4o6ex6/HL2Lt50Ow79gFtXOJl25BpSrE1OGdIZU+nfUx8sP26Df+K+QXqFCFva+vHAnKPgmc+VPpKuUcKLlcDnt7e7Wjffv2GDlyJMaOHYsaNWogICAAALBo0SJ4eXnBzMwMTk5OGDFiBLKyssS2IiIi4O3trdZ+VFQUXFxcxNcqlQrh4eGwsrKCtbU1Jk6cCEEQ9PFW6TlUqkJs++UUHj/JQ3MvV7F8655TqOs/CX69ZmPm8h/xOCdPPHfy7A141nWArfW/v4zat/DAo+wcXLqeqtf4iTR1JOEK6nWcjObdIxE+bxMeZGSpnU+/r8TYOf9D9MwBqGpS/I9G7wZOkEql2LDzd6hUhcjMeoItu0+g7ZvuTJ6oUuOfzM9Yu3Ythg8fjqNHj4plUqkUS5cuhaurK65fv44RI0Zg4sSJWLlypcbtLly4EDExMfj222/h4eGBhQsXYvv27XjnnXeee01ubi5yc3PF10ql8uXeFKk5f/U2AgYtRE5eAcxM5Vi/YCga1Hna+9QjoBmcalaHvY0lzl9JwczlP+LqX+lYv2AogKe/aGytLdTas/knmbpzTwm46/e9EJWm/Vse6NyuCZxrWePm3/fw2cqd+L8xq/DLt+NgZCSFIAgYMfM7DAx6G294OiM55X6xNpxr1cAPy0Ix8JNvETZ3E1SqQjT3csXWJcMr4B2RJqSQQFrGMTgp+6BKVSkTqF27dsHc3Fx8/e677wIA6tWrh/nz56vVHTt2rPi1i4sLZs2ahWHDhmmVQEVFRWHKlCkICgoCAERHR2Pv3r0vvGbu3LmYOXOmxvcgzdRztsPhDVOgzHqCH/efwYiI9dj15Rg0qFMTIUFvi/UautWCfQ0Fuo5Yhht/34Wro80LWiV6NXXv2Ez8uqFbLTR0q4U3PojAkYQraPOmO77afAhZj3MQFtLxuW3cuafEmDkb0TvQFz0CfPAoOxdzv9yF4EnfYPuKkZBwsswrh0N4+lEph/DatWuHxMRE8Vi6dCkAwMfHp1jdffv2oX379qhVqxYsLCzQv39/3L9/H48fP9boXpmZmUhNTYWvr69YZmxsjGbNmr3gKmDKlCnIzMwUj1u3bmnxDul5ZFWMUcfJBt4etTFjZFc0qlcL0ZsOlljXp5ELAOD6rbsAAFtrBdLvP1Krc/f+057B0uaYEL0KXBxrwNrKHNf/fvo9ffjUZZw8ewN2LceiRovRaBr09I+2dsHzMTxiHQBg9dbDUJiZInJ0NzR2d0LLpm74MjIYh04m4dS5mxX1VogqXKXsgTIzMytxxZ2ZmZna65s3b6Jz584YPnw4Zs+ejerVq+PIkSMYPHgw8vLyULVqVUil0mLzmfLz88sco1wuh1wuL3M79GKFgoC8vIISz529/DcAwK6GJQCguZcrFq7Zi7sPHsGm+tOhvF+PX4KFmQncXe31EzBRGdy+8xAPMrNh98/Q87zxPfDpsH9Xnabdy0T3USvw7ZyB8GnoAgB4kpMH6X92VTQyevq3d2Eh53K+ktgFpReVMoHSVEJCAgoLC7Fw4UJx9cmWLVvU6tjY2CAtLQ2CIIhd2YmJieJ5S0tL1KxZE8ePH0fr1q0BAAUFBUhISEDTpk3180YIADBz+Y/wf6shnOyr4dHjHHy/5xSOJFzBtmUjcOPvu/h+zyl0aNkQ1S3NcO7KbXy6+Ae89YYbGtWrBQB4p4UH3F3tMWzGWkSM6ob0+0rMjt6FIf/XGnJZlVLuTqR7WY9zceOfHlIA+CvlPs4m/Q0ry6qopjDD51//jC7veMPOWoEbf9/DjGU7UMepBtr7eQAAnOyrq7VnXvXpH22utWxQy64aAKDj2w2x8n+/Yv7Xu9E9wAdZj3Px2Yqf4FSzOho/s1cUvTq4D5R+MIF6ATc3N+Tn52PZsmV4//33cfToUURHR6vVadu2Le7evYv58+ejR48e2LNnD3bv3g2F4t8hnTFjxmDevHmoV68eGjRogEWLFiEjI0PP74buPczC8Ih1uHNPCYW5CRq61cK2ZSPQztcDf6c9xMETSVi16Vc8fpKHWnbV8P473hg/KEC83shIik2Lh2PcvE0IGLQQVU3l6BP4Jj75OLAC3xVVZokX/8L7w5aKrz9d/AMAoE+gLxZO7oULV29jU+xxZD56AnsbS7zj2wCfDOusVcLfurk7vp4VjKXr9mHp+jiYmsjQ3MsV3y8dAdMSVu0RVRYSoZKtp3/eDuBt27aFt7c3oqKi1MoXL16MBQsWICMjA61bt0a/fv0wYMAAPHz4EFZWVgCeTgqfM2cOHjx4gO7du8Pd3R1fffUVbt68CeBpj9P48eOxZs0aSKVSDBo0CPfu3UNmZqbGO5ErlUpYWlrizv1MteSMiIheD0qlEnbWlsjMLJ+f40W/J/YnJsPcomztZz1Sor137XKL1RBUugTqdcUEiojo9aavBOqAjhKod5hAvVClXIVHREREVBacA0VERGRIuApPL5hAERERGRCuwtMPJlBEREQGRCJ5epS1DXoxzoEiIiIi0hJ7oIiIiAwIp0DpBxMoIiIiQ8IMSi84hEdERESkJfZAERERGRCuwtMP9kAREREZkKJVeGU9tHH48GG8//77cHBwgEQiKfaYMkEQMH36dNSsWROmpqbw9/fHlStX1Oo8ePAA/fr1g0KhgJWVFQYPHoysrCy1On/++SdatWoFExMTODk5Yf78+cVi2bp1Kxo0aAATExN4eXnh559/1joWTTCBIiIiojLJzs5GkyZNsGLFihLPz58/H0uXLkV0dDSOHz8OMzMzBAQEICcnR6zTr18/nD9/HnFxcdi1axcOHz6Mjz76SDyvVCrRsWNHODs7IyEhAQsWLEBERAS++uorsc6xY8fQp08fDB48GGfOnEG3bt3QrVs3nDt3TqtYNMFn4b0m+Cw8IqLXm76ehXfk3N86eRbe240cXypWiUSC7du3o1u3bgCe9vg4ODhg3LhxGD9+PAAgMzMTdnZ2iImJQe/evXHx4kV4enri5MmTaNasGQBgz549eO+99/D333/DwcEBq1atwqeffoq0tDTIZDIAwOTJk7Fjxw5cunQJANCrVy9kZ2dj165dYjwtWrSAt7c3oqOjNYpFU+yBIiIiMiQSHR14mpQ9e+Tm5modzo0bN5CWlgZ/f3+xzNLSEr6+voiPjwcAxMfHw8rKSkyeAMDf3x9SqRTHjx8X67Ru3VpMngAgICAASUlJePjwoVjn2fsU1Sm6jyaxaIoJFBEREZXIyckJlpaW4jF37lyt20hLSwMA2NnZqZXb2dmJ59LS0mBra6t23tjYGNWrV1erU1Ibz97jeXWePV9aLJriKjwiIiIDostVeLdu3VIbwpPL5WVq15CwB4qIiMiA6HIVnkKhUDteJoGyt7cHANy5c0et/M6dO+I5e3t7pKenq50vKCjAgwcP1OqU1Maz93henWfPlxaLpphAERERGRAdToHSCVdXV9jb22P//v1imVKpxPHjx+Hn5wcA8PPzQ0ZGBhISEsQ6Bw4cQGFhIXx9fcU6hw8fRn5+vlgnLi4O7u7uqFatmljn2fsU1Sm6jyaxaIoJFBEREZVJVlYWEhMTkZiYCODpZO3ExEQkJydDIpFg7NixmDVrFn766SecPXsWAwYMgIODg7hSz8PDA506dcLQoUNx4sQJHD16FCNHjkTv3r3h4OAAAOjbty9kMhkGDx6M8+fPY/PmzViyZAnCw8PFOMaMGYM9e/Zg4cKFuHTpEiIiInDq1CmMHDkSADSKRVOcA0VERGRIKuBZeKdOnUK7du3E10VJTXBwMGJiYjBx4kRkZ2fjo48+QkZGBt5++23s2bMHJiYm4jUbNmzAyJEj0b59e0ilUnTv3h1Lly4Vz1taWuKXX35BaGgofHx8UKNGDUyfPl1tr6i33noLGzduxNSpU/HJJ5+gXr162LFjBxo1aiTW0SQWjT4i7gP1euA+UERErzd97QP1+8UUnewD1cLDodxiNQQcwiMiIiLSEofwiIiIDMjLPMuupDboxZhAERERGZAKmAJVKXEIj4iIiEhL7IEiIiIyJOyC0gsmUERERAZEl49yoefjEB4RERGRltgDRUREZEC4Ck8/mEAREREZEE6B0g8mUERERIaEGZRecA4UERERkZbYA0VERGRAuApPP5hAERERGRIdTCJn/lQ6DuERERERaYk9UERERAaEc8j1gwkUERGRIWEGpRccwiMiIiLSEnugiIiIDAhX4ekHEygiIiIDwke56AeH8IiIiIi0xB4oIiIiA8I55PrBBIqIiMiQMIPSCyZQREREBoSTyPWDc6CIiIiItMQeKCIiIgMigQ5W4ekkEsPGBIqIiMiAcAqUfnAIj4iIiEhL7IEiIiIyINxIUz+YQBERERkUDuLpA4fwiIiIiLTEHigiIiIDwiE8/WACRUREZEA4gKcfHMIjIiIi0hJ7oIiIiAwIh/D0gwkUERGRAeGz8PSDCRQREZEh4SQoveAcKCIiIiItsQeKiIjIgLADSj+YQBERERkQTiLXDw7hEREREWmJPVBEREQGhKvw9IMJFBERkSHhJCi94BAeERERkZbYA0VERGRA2AGlH0ygiIiIDAhX4ekHh/CIiIiItMQeKCIiIoNS9lV4HMQrHRMoIiIiA8IhPP3gEB4RERGRlphAEREREWmJQ3hEREQGhEN4+sEEioiIyIDwUS76wSE8IiIiIi2xB4qIiMiAcAhPP5hAERERGRA+ykU/OIRHREREpCX2QBERERkSdkHpBRMoIiIiA8JVePrBITwiIiIiLbEHioiIyIBwFZ5+MIEiIiIyIJwCpR9MoIiIiAwJMyi94BwoIiIiIi2xB4qIiMiAcBWefjCBIiIiMiCcRK4fTKBeE4IgAAAeKZUVHAkREb2Mop/fRT/Py4tSB78ndNGGoWMC9Zp49OgRAMDN1amCIyEiorJ49OgRLC0tdd6uTCaDvb096uno94S9vT1kMplO2jJEEqG8U2HSicLCQqSkpMDCwgIS9q2WO6VSCScnJ9y6dQsKhaKiwyHSOX6P658gCHj06BEcHBwglZbPGq6cnBzk5eXppC2ZTAYTExOdtGWI2AP1mpBKpXB0dKzoMCodhULBXy5k0Pg9rl/l0fP0LBMTEyY9esJtDIiIiIi0xASKiIiISEtMoIhKIJfLMWPGDMjl8ooOhahc8HucqGw4iZyIiIhIS+yBIiIiItISEygiIiIiLTGBIiIiItISEyiiV5SLiwuioqIqOgyi5woJCUG3bt0qOgyiCsEEil5ZISEhkEgkmDdvnlr5jh07tN6NXdNkxMXFBRKJRO3gBqb0qin6t/Hf4+rVqxUdGlGlwQSKXmkmJib4/PPP8fDhQ73dMzIyEqmpqeJx5syZEuvl5+frLSai/+rUqZPa92lqaipcXV3V6ujqkR5EVBwTKHql+fv7w97eHnPnzn1hvW3btqFhw4aQy+VwcXHBwoULxXNt27bFX3/9hbCwMPEv9RexsLCAvb29eNjY2AAAJBIJVq1ahS5dusDMzAyzZ8+GSqXC4MGD4erqClNTU7i7u2PJkiVq7bVt2xZjx45VK+vWrRtCQkLE1+np6Xj//fdhamoKV1dXbNiwQYNPhyozuVyu9n1qb2+P9u3bY+TIkRg7dixq1KiBgIAAAMCiRYvg5eUFMzMzODk5YcSIEcjKyhLbioiIgLe3t1r7UVFRcHFxEV+rVCqEh4fDysoK1tbWmDhxIrgLDlVmTKDolWZkZIQ5c+Zg2bJl+Pvvv0usk5CQgJ49e6J37944e/YsIiIiMG3aNMTExAAAfvjhBzg6Oqr1LL2siIgIfPDBBzh79iwGDRqEwsJCODo6YuvWrbhw4QKmT5+OTz75BFu2bNGq3ZCQENy6dQu//vorvv/+e6xcuRLp6ekvHSdVXmvXroVMJsPRo0cRHR0N4OmzNJcuXYrz589j7dq1OHDgACZOnKhVuwsXLkRMTAy+/fZbHDlyBA8ePMD27dvL4y0QvR4EoldUcHCw0LVrV0EQBKFFixbCoEGDBEEQhO3btwvPfuv27dtX6NChg9q1EyZMEDw9PcXXzs7OwuLFi0u9p7OzsyCTyQQzMzPxWLJkiSAIggBAGDt2bKlthIaGCt27dxdft2nTRhgzZoxana5duwrBwcGCIAhCUlKSAEA4ceKEeP7ixYsCAI1ipsonODhYMDIyUvs+7dGjh9CmTRvhjTfeKPX6rVu3CtbW1uLrGTNmCE2aNFGrs3jxYsHZ2Vl8XbNmTWH+/Pni6/z8fMHR0VH8N0pU2RhXbPpGpJnPP/8c77zzDsaPH1/s3MWLF9G1a1e1spYtWyIqKgoqlQpGRkZa3WvChAlqw2s1atQQv27WrFmx+itWrMC3336L5ORkPHnyBHl5ecWGQ17k4sWLMDY2ho+Pj1jWoEEDWFlZaRU3VS7t2rXDqlWrxNdmZmbo06eP2vdRkX379mHu3Lm4dOkSlEolCgoKkJOTg8ePH6Nq1aql3iszMxOpqanw9fUVy4yNjdGsWTMO41GlxSE8ei20bt0aAQEBmDJlSrnfq0aNGnBzcxOPZxMZMzMztbqbNm3C+PHjMXjwYPzyyy9ITEzEwIED1SbvSqXSYr9kOAGdysrMzEzt+7RmzZpi+bNu3ryJzp07o3Hjxti2bRsSEhKwYsUKAP9OMuf3KJH2mEDRa2PevHnYuXMn4uPj1co9PDxw9OhRtbKjR4+ifv36Yu+TTCaDSqXSeUxHjx7FW2+9hREjRuCNN96Am5sbrl27plbHxsZGbd6VSqXCuXPnxNcNGjRAQUEBEhISxLKkpCRkZGToPF6qfBISElBYWIiFCxeiRYsWqF+/PlJSUtTq2NjYIC0tTS2JSkxMFL+2tLREzZo1cfz4cbHsv9+zRJUNEyh6bXh5eaFfv35YunSpWvm4ceOwf/9+fPbZZ7h8+TLWrl2L5cuXqw33ubi44PDhw7h9+zbu3buns5jq1auHU6dOYe/evbh8+TKmTZuGkydPqtV55513EBsbi9jYWFy6dAnDhw9XS47c3d3RqVMnfPzxxzh+/DgSEhIwZMgQmJqa6ixOqrzc3NyQn5+PZcuW4fr161i/fr04ubxI27ZtcffuXcyfPx/Xrl3DihUrsHv3brU6Y8aMwbx587Bjxw5cunQJI0aMYJJPlRoTKHqtREZGorCwUK2sadOm2LJlCzZt2oRGjRph+vTpiIyMVJvHFBkZiZs3b6Ju3britgS68PHHHyMoKAi9evWCr68v7t+/jxEjRqjVGTRoEIKDgzFgwAC0adMGderUQbt27dTqrFmzBg4ODmjTpg2CgoLw0UcfwdbWVmdxUuXVpEkTLFq0CJ9//jkaNWqEDRs2FNsWxMPDAytXrsSKFSvQpEkTnDhxoth8w3HjxqF///4IDg6Gn58fLCws8MEHH+jzrRC9UiQCZwASERERaYU9UERERERaYgJFREREpCUmUERERERaYgJFREREpCUmUERERERaYgJFREREpCUmUERERERaYgJFRBoLCQlBt27dxNdt27bF2LFj9R7HwYMHIZFIXrgTtkQiwY4dOzRuMyIiQquHQJfk5s2bkEgkao9BISLDxASK6DUXEhICiUQCiUQCmUwGNzc3REZGoqCgoNzv/cMPP+Czzz7TqK4mSQ8R0evCuKIDIKKy69SpE9asWYPc3Fz8/PPPCA0NRZUqVTBlypRidfPy8iCTyXRy3+rVq+ukHSKi1w17oIgMgFwuh729PZydnTF8+HD4+/vjp59+AvDvsNvs2bPh4OAAd3d3AMCtW7fQs2dPWFlZoXr16ujatStu3rwptqlSqRAeHg4rKytYW1tj4sSJ+O+Tn/47hJebm4tJkybByckJcrkcbm5u+Oabb3Dz5k3x+X/VqlWDRCIRn1VYWFiIuXPnwtXVFaampmjSpAm+//57tfv8/PPPqF+/PkxNTdGuXTu1ODU1adIk1K9fH1WrVkWdOnUwbdo05OfnF6v35ZdfwsnJCVWrVkXPnj2RmZmpdn716tXw8PCAiYkJGjRogJUrV2odCxG9/phAERkgU1NT5OXlia/379+PpKQkxMXFYdeuXcjPz0dAQAAsLCzw22+/4ejRozA3N0enTp3E6xYuXIiYmBh8++23OHLkCB48eIDt27e/8L4DBgzA//73PyxduhQXL17El19+CXNzczg5OWHbtm0AgKSkJKSmpmLJkiUAgLlz52LdunWIjo7G+fPnERYWhg8//BCHDh0C8DTRCwoKwvvvv4/ExEQMGTIEkydP1vozsbCwQExMDC5cuIAlS5bg66+/xuLFi9XqXL16FVu2bMHOnTuxZ88enDlzRu3h0Bs2bMD06dMxe/ZsXLx4EXPmzMG0adOwdu1areMhotecQESvteDgYKFr166CIAhCYWGhEBcXJ8jlcmH8+PHieTs7OyE3N1e8Zv369YK7u7tQWFgoluXm5gqmpqbC3r17BUEQhJo1awrz588Xz+fn5wuOjo7ivQRBENq0aSOMGTNGEARBSEpKEgAIcXFxJcb566+/CgCEhw8fimU5OTlC1apVhWPHjqnVHTx4sNCnTx9BEARhypQpgqenp9r5SZMmFWvrvwAI27dvf+75BQsWCD4+PuLrGTNmCEZGRsLff/8tlu3evVuQSqVCamqqIAiCULduXWHjxo1q7Xz22WeCn5+fIAiCcOPGDQGAcObMmefel4gMA+dAERmAXbt2wdzcHPn5+SgsLETfvn0REREhnvfy8lKb9/THH3/g6tWrsLCwUGsnJycH165dQ2ZmJlJTU+Hr6yueMzY2RrNmzYoN4xVJTEyEkZER2rRpo3HcV69exePHj9GhQwe18ry8PLzxxhsAgIsXL6rFAQB+fn4a36PI5s2bsXTpUly7dg1ZWVkoKCiAQqFQq1O7dm3UqlVL7T6FhYVISkqChYUFrl27hsGDB2Po0KFinYKCAlhaWmodDxG93phAERmAdu3aYdWqVZDJZHBwcICxsfo/bTMzM7XXWVlZ8PHxwYYNG4q1ZWNj81IxmJqaan1NVlYWACA2NlYtcQGezuvSlfj4ePTr1w8zZ85EQEAALC0tsWnTJixcuFDrWL/++utiCZ2RkZHOYiWi1wMTKCIDYGZmBjc3N43rN23aFJs3b4atrW2xXpgiNWvWxPHjx9G6dWsAT3taEhIS0LRp0xLre3l5obCwEIcOHYK/v3+x80U9YCqVSizz9PSEXC5HcnLyc3uuPDw8xAnxRX7//ffS3+Qzjh07BmdnZ3z66adi2V9//VWsXnJyMlJSUuDg4CDeRyqVwt3dHXZ2dnBwcMD169fRr18/re5PRIaHk8iJKqF+/fqhRo0a6Nq1K3777TfcuHEDBw8exOjRo/H3338DAMaMGYN58+Zhx44duHTpEkaMGPHCPZxcXFwQHByMQYMGYceOHWKbW7ZsAQA4OztDIpFg165duHv3LrKysmBhYYHx48cjLCwMa9euxbVr13D69GksW7ZMnJg9bNgwXLlyBRMmTEBSUhI2btyImJgYrd5vvXr1kJycjE2bNuHatWtYunRpiRPiTUxMEBwcjD/++AO//fYbRo8ejZ49e8Le3h4AMHPmTMydOxdLly7F5cuXcfbsWaxZswaLFi3SKh4iev0xgSKqhKpWrYrDhw+jdu3aCAoKgoeHBwYPHoycnByxR2rcuHHo378/goOD4efnBwsLC3zwwQcvbHfVqlXo0aMHRowYgQYNGmDo0KHIzs4GANSqVQszZ87E5MmTYWdnh5EjRwIAPvvsM0ybNg1z586Fh4cHOnXqhNjYWLi6ugJ4Oi9p27Zt2LFjB5o0aYLo6GjMmTNHq/fbpUsXhIWFYeTIkfD29saxY8cwbdq0YvXc3NwQFBSE9957Dx07dkTjxo3VtikYMmQIVq9ejTVr1sDLywtt2rRBTEyMGCsRVR4S4XkzQomIiIioROyBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLTGBIiIiItISEygiIiIiLf0/xWrNfra3A5AAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Display confusion matrix\n",
"cm = confusion_matrix(y_test, y_pred)\n",
"disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['Not Fraud', 'Fraud'])\n",
"disp.plot(cmap=plt.cm.Blues)\n",
"plt.title('Confusion Matrix')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Model Export\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model and scaler saved successfully!\n"
]
}
],
"source": [
"# Save the model\n",
"joblib.dump(model, 'cc_fraud_model.pkl')\n",
"\n",
"# Save the scaler\n",
"joblib.dump(scaler, 'cc_fraud_scaler.pkl')\n",
"\n",
"print(\"Model and scaler saved successfully!\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|