Jesse-marqo commited on
Commit
441877f
·
verified ·
1 Parent(s): 607ae85

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -15,7 +15,7 @@ pinned: false
15
 
16
  <p align="center">
17
  <b>Your Unified Platform for Embedding Generation and Search</b><br>
18
- Marqo is an open-source platform designed to streamline embedding generation, search, and ranking, delivering state-of-the-art retrieval across multimodal data. Also available on <a href="https://www.marqo.ai/cloud">Marqo Cloud</a> for seamless integration and scalability.<br>
19
  </p>
20
 
21
  <p align="center">
@@ -23,7 +23,7 @@ pinned: false
23
  <ul>
24
  <li><a href="https://github.com/marqo-ai/marqo">Marqo</a>: The core embedding generation and search engine.</li>
25
  <li><a href="https://github.com/marqo-ai/GCL">GCL</a>: Generalized Contrastive Learning for multimodal retrieval.</li>
26
- <li><a href="https://github.com/marqo-ai/marqo-FashionCLIP">FashionCLIP</a>: SOTA image and text embeddings for fashion search.</li>
27
  </ul>
28
  </p>
29
 
@@ -31,9 +31,9 @@ pinned: false
31
  <b>Our Latest Innovations</b><br>
32
  <ul>
33
  <li><a href="https://www.marqo.ai/blog/introducing-marqtune">Embedding Fine-Tuning with MarqoTune</a>: Tailor embeddings to your domain for superior search results.</li>
34
- <li><a href="https://www.marqo.ai/blog/search-model-for-fashion">FashionSigLIP</a>: Our latest model for fashion retrieval, combining cutting-edge techniques for enhanced search accuracy.</li>
35
  <li><a href="https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking?_gl=1*vkeuqm*_gcl_au*MTM0OTc4OTY4Ny4xNzIzNTQ0NTcy">Generalized Contrastive Learning (GCL)</a>: A framework for training robust embedding models for multimodal search. <a href="https://arxiv.org/abs/2404.08535">Read the GCL paper on arXiv.</a></li>
36
- <li><a href="https://www.marqo.ai/blog/understanding-recall-in-hnsw-search">Understanding Recall in HNSW</a>: Insights into optimizing recall in hierarchical navigable small worlds (HNSW) search structures. <a href="https://arxiv.org/abs/2405.17813">Read the HNSW paper on arXiv.</a></li>
37
  </ul>
38
  </p>
39
 
 
15
 
16
  <p align="center">
17
  <b>Your Unified Platform for Embedding Generation and Search</b><br>
18
+ Marqo is an open-source platform designed to streamline embedding generation, search, and ranking, delivering state-of-the-art retrieval across multimodal data. Also available on <a href="https://www.marqo.ai/cloud">Marqo Cloud</a> for seamless integration and scalability into any application or service.<br>
19
  </p>
20
 
21
  <p align="center">
 
23
  <ul>
24
  <li><a href="https://github.com/marqo-ai/marqo">Marqo</a>: The core embedding generation and search engine.</li>
25
  <li><a href="https://github.com/marqo-ai/GCL">GCL</a>: Generalized Contrastive Learning for multimodal retrieval.</li>
26
+ <li><a href="https://github.com/marqo-ai/marqo-FashionCLIP">FashionCLIP</a>: SOTA image and text embeddings for fashion search, recommendations and classification.</li>
27
  </ul>
28
  </p>
29
 
 
31
  <b>Our Latest Innovations</b><br>
32
  <ul>
33
  <li><a href="https://www.marqo.ai/blog/introducing-marqtune">Embedding Fine-Tuning with MarqoTune</a>: Tailor embeddings to your domain for superior search results.</li>
34
+ <li><a href="https://www.marqo.ai/blog/search-model-for-fashion">FashionSigLIP</a>: Our latest model for fashion retrieval, combining cutting-edge techniques for enhanced search.</li>
35
  <li><a href="https://www.marqo.ai/blog/generalized-contrastive-learning-for-multi-modal-retrieval-and-ranking?_gl=1*vkeuqm*_gcl_au*MTM0OTc4OTY4Ny4xNzIzNTQ0NTcy">Generalized Contrastive Learning (GCL)</a>: A framework for training robust embedding models for multimodal search. <a href="https://arxiv.org/abs/2404.08535">Read the GCL paper on arXiv.</a></li>
36
+ <li><a href="https://www.marqo.ai/blog/understanding-recall-in-hnsw-search">Understanding Recall in HNSW</a>: Insights into understanding and optimizing recall when using hierarchical navigable small worlds (HNSW) in vector search. <a href="https://arxiv.org/abs/2405.17813">Read the HNSW paper on arXiv.</a></li>
37
  </ul>
38
  </p>
39