Spaces:
Sleeping
Sleeping
Commit
·
a8d8832
1
Parent(s):
b75f00f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
|
5 |
+
# Load pre-trained model and tokenizer
|
6 |
+
model_name = "distilbert-base-uncased"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Create Streamlit app
|
11 |
+
st.title("Hugging Face Transformers + Streamlit Example")
|
12 |
+
|
13 |
+
# Define a function to use the model for prediction
|
14 |
+
@st.cache(allow_output_mutation=True)
|
15 |
+
def run_model(input_text):
|
16 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
17 |
+
outputs = model(**inputs)
|
18 |
+
predictions = torch.softmax(outputs.logits, dim=1)
|
19 |
+
return predictions
|
20 |
+
|
21 |
+
# Streamlit interface
|
22 |
+
user_input = st.text_input("Enter text:", "Type Here...")
|
23 |
+
if st.button("Predict"):
|
24 |
+
predictions = run_model(user_input)
|
25 |
+
st.write(f"Predictions: {predictions}")
|