|
import gradio as gr |
|
from transformers import pipeline |
|
from PIL import Image |
|
from PIL import UnidentifiedImageError |
|
|
|
def sign_classifier(input_image): |
|
try: |
|
|
|
image = input_image |
|
|
|
|
|
sign_pipe = pipeline("image-classification", model="Marxulia/asl_aplhabet_img_classifier_v3") |
|
sign_result = sign_pipe(image) |
|
predicted_sign = sign_result[0]['label'] |
|
sign_confidence = sign_result[0]['score'] |
|
|
|
|
|
sign_output = f"Sign Prediction: {predicted_sign}\nConfidence: {sign_confidence}" |
|
|
|
return sign_output |
|
|
|
except UnidentifiedImageError: |
|
return "Error: Invalid input image format." |
|
|
|
|
|
example_image1 = Image.open('H3.jpg') |
|
example_image2 = Image.open('B3.jpg') |
|
|
|
|
|
input_image = gr.Image(type="pil", label="Upload Image") |
|
output_sign = gr.Textbox(label="Sign Classifier") |
|
|
|
|
|
examples = [[example_image1, "H Sign"],[example_image2, "B Sign"]] |
|
|
|
|
|
interface = gr.Interface(fn=sign_classifier, inputs=input_image, outputs=[output_sign], |
|
title="Image Classifier", description="Upload an image and translate the sign", examples=examples) |
|
|
|
interface.launch(share=True,debug=True) |