|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
|
|
model_name = "SamLowe/roberta-base-go_emotions" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval", |
|
"caring", "confusion", "curiosity", "desire", "disappointment", |
|
"disapproval", "disgust", "embarrassment", "excitement", |
|
"fear", "gratitude", "grief", "joy", "love", "nervousness", |
|
"optimism", "pride", "realization", "relief", "remorse", |
|
"sadness", "surprise", "neutral"] |
|
|
|
def predict_emotion(text): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predicted_class = logits.argmax().item() |
|
|
|
predicted_emotion = emotion_labels[predicted_class] |
|
confidence = logits.softmax(dim=1).squeeze()[predicted_class].item() |
|
return predicted_emotion, confidence |
|
|
|
def get_confidence_color(confidence): |
|
|
|
if confidence >= 0.8: |
|
return "green" |
|
elif confidence >= 0.5: |
|
return "orange" |
|
else: |
|
return "red" |
|
|
|
iface = gr.Interface( |
|
fn=predict_emotion, |
|
inputs=gr.Textbox(), |
|
outputs=[ |
|
gr.Textbox(), |
|
"text", |
|
gr.Textbox("Confidence Score:", default=""), |
|
], |
|
live=True, |
|
title="Emotion Prediction", |
|
description="Enter a sentence for emotion prediction.", |
|
) |
|
|
|
|
|
iface.style( |
|
confidence_score=get_confidence_color |
|
) |
|
|
|
iface.launch() |
|
|