app.py file
Browse files
app.py
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
| 4 |
+
|
| 5 |
+
model_name = "distilbert-base-uncased"
|
| 6 |
+
tokenizer = DistilBertTokenizer.from_pretrained(model_name)
|
| 7 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_name)
|
| 8 |
+
|
| 9 |
+
def predict_sentiment(text):
|
| 10 |
+
# Tokenize and predict
|
| 11 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 12 |
+
outputs = model(**inputs)
|
| 13 |
+
logits = outputs.logits
|
| 14 |
+
predicted_class = logits.argmax().item()
|
| 15 |
+
|
| 16 |
+
# Return the predicted class
|
| 17 |
+
return {"positive": logits[0][1].item(), "negative": logits[0][0].item()}
|
| 18 |
+
|
| 19 |
+
iface = gr.Interface(
|
| 20 |
+
fn=predict_sentiment,
|
| 21 |
+
inputs=gr.Textbox(),
|
| 22 |
+
outputs="label",
|