Update app.py
Browse files
app.py
CHANGED
@@ -9,27 +9,36 @@ subprocess.run(["pip", "install", "-r", "requirements.txt"])
|
|
9 |
import gradio as gr
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
|
12 |
-
|
13 |
# Load the model from Hugging Face Model Hub
|
14 |
model_name = "SamLowe/roberta-base-go_emotions"
|
15 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def predict_emotion(text):
|
19 |
inputs = tokenizer(text, return_tensors="pt")
|
20 |
outputs = model(**inputs)
|
21 |
logits = outputs.logits
|
22 |
predicted_class = logits.argmax().item()
|
23 |
|
24 |
-
|
|
|
25 |
|
26 |
iface = gr.Interface(
|
27 |
fn=predict_emotion,
|
28 |
inputs=gr.Textbox(),
|
29 |
-
outputs="
|
30 |
live=True,
|
31 |
title="Emotion Prediction",
|
32 |
description="Enter a sentence for emotion prediction.",
|
33 |
)
|
34 |
|
35 |
iface.launch()
|
|
|
|
9 |
import gradio as gr
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
11 |
|
|
|
12 |
# Load the model from Hugging Face Model Hub
|
13 |
model_name = "SamLowe/roberta-base-go_emotions"
|
14 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
15 |
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
16 |
|
17 |
+
# Define emotion labels used by the model
|
18 |
+
emotion_labels = ["admiration", "amusement", "anger", "annoyance", "approval",
|
19 |
+
"caring", "confusion", "curiosity", "desire", "disappointment",
|
20 |
+
"disapproval", "disgust", "embarrassment", "excitement",
|
21 |
+
"fear", "gratitude", "grief", "joy", "love", "nervousness",
|
22 |
+
"optimism", "pride", "realization", "relief", "remorse",
|
23 |
+
"sadness", "surprise", "neutral"]
|
24 |
+
|
25 |
def predict_emotion(text):
|
26 |
inputs = tokenizer(text, return_tensors="pt")
|
27 |
outputs = model(**inputs)
|
28 |
logits = outputs.logits
|
29 |
predicted_class = logits.argmax().item()
|
30 |
|
31 |
+
predicted_emotion = emotion_labels[predicted_class]
|
32 |
+
return {"predicted_emotion": predicted_emotion}
|
33 |
|
34 |
iface = gr.Interface(
|
35 |
fn=predict_emotion,
|
36 |
inputs=gr.Textbox(),
|
37 |
+
outputs="text",
|
38 |
live=True,
|
39 |
title="Emotion Prediction",
|
40 |
description="Enter a sentence for emotion prediction.",
|
41 |
)
|
42 |
|
43 |
iface.launch()
|
44 |
+
|