# app.py import gradio as gr from transformers import DistilBertTokenizer, DistilBertForSequenceClassification model_name = "distilbert-base-uncased" tokenizer = DistilBertTokenizer.from_pretrained(model_name) model = DistilBertForSequenceClassification.from_pretrained(model_name) def predict_sentiment(text): # Tokenize and predict inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class = logits.argmax().item() # Return the predicted class return {"positive": logits[0][1].item(), "negative": logits[0][0].item()} iface = gr.Interface( fn=predict_sentiment, inputs=gr.Textbox(), outputs="label",