Update scripts/setup_vectorstore.py
Browse files- scripts/setup_vectorstore.py +21 -30
scripts/setup_vectorstore.py
CHANGED
@@ -1,30 +1,21 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
print(f"
|
22 |
-
|
23 |
-
# Add documents in batches to avoid hitting token limits
|
24 |
-
for i in range(0, len(chunks), BATCH_SIZE):
|
25 |
-
batch = chunks[i:i + BATCH_SIZE]
|
26 |
-
vectorstore.add_documents(batch)
|
27 |
-
print(f"✅ Added batch {i // BATCH_SIZE + 1} of {len(chunks) // BATCH_SIZE + 1}")
|
28 |
-
|
29 |
-
# vectorstore.persist()
|
30 |
-
print(f"✅ Vectorstore saved to {DB_DIR}")
|
|
|
1 |
+
import pickle
|
2 |
+
from pathlib import Path
|
3 |
+
from langchain_community.vectorstores import Chroma
|
4 |
+
from langchain_openai import OpenAIEmbeddings
|
5 |
+
|
6 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
7 |
+
CHUNKS_PATH = BASE_DIR / "output" / "chunks.pkl"
|
8 |
+
DB_DIR = BASE_DIR / "db"
|
9 |
+
|
10 |
+
with open(CHUNKS_PATH, "rb") as f:
|
11 |
+
chunks = pickle.load(f)
|
12 |
+
|
13 |
+
embedding = OpenAIEmbeddings(model="text-embedding-3-small")
|
14 |
+
vectorstore = Chroma(persist_directory=str(DB_DIR), embedding_function=embedding)
|
15 |
+
|
16 |
+
BATCH_SIZE = 100
|
17 |
+
print(f"🧠 Embedding and adding {len(chunks)} chunks in batches...")
|
18 |
+
for i in range(0, len(chunks), BATCH_SIZE):
|
19 |
+
batch = chunks[i:i + BATCH_SIZE]
|
20 |
+
vectorstore.add_documents(batch)
|
21 |
+
print(f"✅ Added batch {i // BATCH_SIZE + 1}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|