Upload 7 files
Browse files- app.py +41 -0
- output/all_docs.pkl +3 -0
- output/chunks.pkl +3 -0
- requirements.txt +10 -0
- scripts/rag_chat.py +36 -0
- scripts/router_chain.py +33 -0
- scripts/summarizer.py +7 -0
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from scripts.router_simple import build_router_chain
|
4 |
+
|
5 |
+
OPENAI_KEY = os.getenv("OPENAI_API_KEY", None)
|
6 |
+
MODEL_NAME = os.getenv("OPENAI_MODEL", "gpt-4o-mini")
|
7 |
+
|
8 |
+
if not OPENAI_KEY:
|
9 |
+
print("WARNING: OPENAI_API_KEY not set. The app may fail at runtime.")
|
10 |
+
|
11 |
+
# Build the router once (keeps vectorstore & models in memory)
|
12 |
+
router = build_router_chain(model_name=MODEL_NAME)
|
13 |
+
|
14 |
+
def chat_fn(message, history):
|
15 |
+
if not message:
|
16 |
+
return history, ""
|
17 |
+
# call router
|
18 |
+
result = router.invoke({"input": message})
|
19 |
+
# RetrievalQA returns dict with 'result' key (and maybe 'source_documents')
|
20 |
+
answer = result.get("result") if isinstance(result, dict) else str(result)
|
21 |
+
# append sources if present
|
22 |
+
sources = None
|
23 |
+
if isinstance(result, dict) and "source_documents" in result and result["source_documents"]:
|
24 |
+
try:
|
25 |
+
sources = list({str(d.metadata.get("source", "unknown")) for d in result["source_documents"]})
|
26 |
+
except Exception:
|
27 |
+
sources = None
|
28 |
+
if sources:
|
29 |
+
answer = f"{answer}\n\n📚 Sources: {', '.join(sources)}"
|
30 |
+
history.append((message, answer))
|
31 |
+
return history, ""
|
32 |
+
|
33 |
+
with gr.Blocks() as demo:
|
34 |
+
gr.Markdown("## 📚 Course Assistant — Chat with your course files")
|
35 |
+
chatbot = gr.Chatbot(elem_id="chatbot")
|
36 |
+
txt = gr.Textbox(show_label=False, placeholder="Ask about the course...")
|
37 |
+
txt.submit(chat_fn, [txt, chatbot], [chatbot, txt])
|
38 |
+
txt.submit(lambda: None, None, txt) # clear input
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
demo.launch(server_port=int(os.getenv("PORT", 7860)))
|
output/all_docs.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5f5adf7c679373919bad157bdf906af58e79d96197f5dc8d4a544b808ba9943
|
3 |
+
size 6245290
|
output/chunks.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0401320f1374d0169a82a3f9e66fc2814bf3c3180074d90ccaffdd530c00240a
|
3 |
+
size 6796736
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-community
|
3 |
+
langchain-openai
|
4 |
+
langchain-chroma
|
5 |
+
chromadb
|
6 |
+
tiktoken
|
7 |
+
gradio
|
8 |
+
pickle5
|
9 |
+
pydantic<2
|
10 |
+
|
scripts/rag_chat.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import RetrievalQA
|
2 |
+
from langchain_openai import ChatOpenAI
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
from langchain_openai import OpenAIEmbeddings
|
5 |
+
from langchain.prompts import PromptTemplate
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
9 |
+
DB_DIR = str(BASE_DIR / "db")
|
10 |
+
|
11 |
+
def build_general_qa_chain(model_name=None):
|
12 |
+
embedding = OpenAIEmbeddings(model="text-embedding-3-small")
|
13 |
+
vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embedding)
|
14 |
+
|
15 |
+
# Custom prompt with source attribution
|
16 |
+
template = """Use the following context to answer the question.
|
17 |
+
If the answer isn't found in the context, use your general knowledge but say so.
|
18 |
+
Always cite your sources at the end with 'Source: <filename>' when using course materials.
|
19 |
+
|
20 |
+
Context: {context}
|
21 |
+
Question: {question}
|
22 |
+
Helpful Answer:"""
|
23 |
+
|
24 |
+
QA_PROMPT = PromptTemplate(
|
25 |
+
template=template,
|
26 |
+
input_variables=["context", "question"]
|
27 |
+
)
|
28 |
+
|
29 |
+
llm = ChatOpenAI(model_name=model_name or "gpt-4o-mini", temperature=0.0)
|
30 |
+
qa_chain = RetrievalQA.from_chain_type(
|
31 |
+
llm=llm,
|
32 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 4}),
|
33 |
+
chain_type_kwargs={"prompt": QA_PROMPT},
|
34 |
+
return_source_documents=True
|
35 |
+
)
|
36 |
+
return qa_chain
|
scripts/router_chain.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# scripts/router_simple.py
|
2 |
+
from typing import Dict, Any
|
3 |
+
from langchain.chat_models import ChatOpenAI
|
4 |
+
from langchain.prompts import ChatPromptTemplate
|
5 |
+
from scripts.rag_chat import build_general_qa_chain
|
6 |
+
|
7 |
+
def build_router_chain(model_name=None):
|
8 |
+
general_qa = build_general_qa_chain(model_name=model_name)
|
9 |
+
llm = ChatOpenAI(model_name=model_name or "gpt-4o-mini", temperature=0.0)
|
10 |
+
|
11 |
+
class Router:
|
12 |
+
def invoke(self, input_dict: Dict[str, Any]):
|
13 |
+
text = input_dict.get("input", "").lower()
|
14 |
+
if "code" in text or "program" in text or "debug" in text:
|
15 |
+
prompt = ChatPromptTemplate.from_template(
|
16 |
+
"As a coding assistant, help with this Python question.\nQuestion: {input}\nAnswer:"
|
17 |
+
)
|
18 |
+
chain = prompt | llm
|
19 |
+
return {"result": chain.invoke({"input": input_dict["input"]}).content}
|
20 |
+
elif "summarize" in text or "summary" in text:
|
21 |
+
prompt = ChatPromptTemplate.from_template(
|
22 |
+
"Provide a concise summary about: {input}\nSummary:"
|
23 |
+
)
|
24 |
+
chain = prompt | llm
|
25 |
+
return {"result": chain.invoke({"input": input_dict["input"]}).content}
|
26 |
+
elif "calculate" in text or any(char.isdigit() for char in text):
|
27 |
+
return {"result": "For calculations, please ask a specific calculation or provide more context."}
|
28 |
+
else:
|
29 |
+
# Use RAG chain
|
30 |
+
result = general_qa({"query": input_dict["input"]})
|
31 |
+
return result
|
32 |
+
|
33 |
+
return Router()
|
scripts/summarizer.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains.summarize import load_summarize_chain
|
2 |
+
from langchain_openai import ChatOpenAI
|
3 |
+
|
4 |
+
def get_summarizer():
|
5 |
+
llm = ChatOpenAI(model_name="gpt-4o-mini", temperature=0)
|
6 |
+
chain = load_summarize_chain(llm, chain_type="map_reduce")
|
7 |
+
return chain
|