Update scripts/rag_chat.py
Browse files- scripts/rag_chat.py +42 -36
scripts/rag_chat.py
CHANGED
@@ -1,36 +1,42 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
from
|
4 |
-
from langchain_openai import OpenAIEmbeddings
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
BASE_DIR = Path(__file__).resolve().parent.parent
|
9 |
-
DB_DIR =
|
10 |
-
|
11 |
-
def build_general_qa_chain(model_name=None):
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
)
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from langchain.chains import RetrievalQA
|
4 |
+
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
5 |
+
from langchain_chroma import Chroma
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
|
8 |
+
BASE_DIR = Path(__file__).resolve().parent.parent
|
9 |
+
DB_DIR = BASE_DIR / "db"
|
10 |
+
|
11 |
+
def build_general_qa_chain(model_name=None):
|
12 |
+
if not DB_DIR.exists():
|
13 |
+
print("📦 No DB found. Building vectorstore...")
|
14 |
+
from scripts import load_documents, chunk_and_embed, setup_vectorstore
|
15 |
+
load_documents.main()
|
16 |
+
chunk_and_embed.main()
|
17 |
+
setup_vectorstore.main()
|
18 |
+
|
19 |
+
embedding = OpenAIEmbeddings(model="text-embedding-3-small")
|
20 |
+
vectorstore = Chroma(persist_directory=str(DB_DIR), embedding_function=embedding)
|
21 |
+
|
22 |
+
template = """Use the following context to answer the question.
|
23 |
+
If the answer isn't found in the context, use your general knowledge but say so.
|
24 |
+
Always cite your sources at the end with 'Source: <filename>' when using course materials.
|
25 |
+
|
26 |
+
Context: {context}
|
27 |
+
Question: {question}
|
28 |
+
Helpful Answer:"""
|
29 |
+
|
30 |
+
QA_PROMPT = PromptTemplate(
|
31 |
+
template=template,
|
32 |
+
input_variables=["context", "question"]
|
33 |
+
)
|
34 |
+
|
35 |
+
llm = ChatOpenAI(model_name=model_name or "gpt-4o-mini", temperature=0.0)
|
36 |
+
qa_chain = RetrievalQA.from_chain_type(
|
37 |
+
llm=llm,
|
38 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 4}),
|
39 |
+
chain_type_kwargs={"prompt": QA_PROMPT},
|
40 |
+
return_source_documents=True
|
41 |
+
)
|
42 |
+
return qa_chain
|