File size: 1,040 Bytes
8392a30
c951ada
8392a30
12d98c8
 
 
 
 
8b64710
12d98c8
8b64710
daface4
c951ada
8b64710
3137728
ca567b7
 
a354d41
b7245b1
4e00c2f
5f8225b
a354d41
8983eae
c404dbe
878ef78
c404dbe
 
 
c951ada
 
ca06cf9
25b692d
a354d41
 
 
d7dd9fa
03cd51d
a354d41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import gradio as gr
from transformers import pipeline

from huggingface_hub import from_pretrained_fastai

# repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
repo_id = "MasleK/snails_snakes_slugs"

learn = from_pretrained_fastai(repo_id)

categories = learn.dls.vocab

def predict(image):
    label, index, probs = learn.predict(image)
   
    return dict(zip(categories, map(float,probs)))

title = "Snail, snake, slug Classifier"
description = f"""<h1> Slug, snake, snail or other<h1>
              <p>A classifier trained on about 600 images. Created as a demo for Gradio and HuggingFace Spaces."""
examples = ['330px-Orange_slug.jpg', 'Green_Snakes.jpg', 'Helix_pomatia_002.JPG', 'baum-jung.jpg']



interpretation='default'
enable_queue=True


gr.Interface(
    predict,
    inputs=gr.components.Image(label="candidate", type="filepath"),
    outputs=gr.components.Label(num_top_classes=4),
    title=title,
    examples=examples,
    description=description,
    # interpretation=interpretation,
    # enable_queue=enable_queue
).launch()