Spaces:
Runtime error
Runtime error
Commit
·
6860da7
1
Parent(s):
3d99ca3
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,599 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import uuid
|
5 |
+
from time import time
|
6 |
+
from urllib import request
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import progressbar
|
11 |
+
import torchaudio
|
12 |
+
|
13 |
+
from tortoise.models.classifier import AudioMiniEncoderWithClassifierHead
|
14 |
+
from tortoise.models.diffusion_decoder import DiffusionTts
|
15 |
+
from tortoise.models.autoregressive import UnifiedVoice
|
16 |
+
from tqdm import tqdm
|
17 |
+
from tortoise.models.arch_util import TorchMelSpectrogram
|
18 |
+
from tortoise.models.clvp import CLVP
|
19 |
+
from tortoise.models.cvvp import CVVP
|
20 |
+
from tortoise.models.random_latent_generator import RandomLatentConverter
|
21 |
+
from tortoise.models.vocoder import UnivNetGenerator
|
22 |
+
from tortoise.utils.audio import wav_to_univnet_mel, denormalize_tacotron_mel
|
23 |
+
from tortoise.utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule
|
24 |
+
from tortoise.utils.tokenizer import VoiceBpeTokenizer
|
25 |
+
from tortoise.utils.wav2vec_alignment import Wav2VecAlignment
|
26 |
+
from contextlib import contextmanager
|
27 |
+
from huggingface_hub import hf_hub_download
|
28 |
+
pbar = None
|
29 |
+
|
30 |
+
DEFAULT_MODELS_DIR = os.path.join(os.path.expanduser('~'), '.cache', 'tortoise', 'models')
|
31 |
+
MODELS_DIR = os.environ.get('TORTOISE_MODELS_DIR', DEFAULT_MODELS_DIR)
|
32 |
+
MODELS = {
|
33 |
+
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/autoregressive.pth',
|
34 |
+
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/classifier.pth',
|
35 |
+
'clvp2.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/clvp2.pth',
|
36 |
+
'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/cvvp.pth',
|
37 |
+
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/diffusion_decoder.pth',
|
38 |
+
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/vocoder.pth',
|
39 |
+
'rlg_auto.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_auto.pth',
|
40 |
+
'rlg_diffuser.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/main/.models/rlg_diffuser.pth',
|
41 |
+
}
|
42 |
+
|
43 |
+
def get_model_path(model_name, models_dir=MODELS_DIR):
|
44 |
+
"""
|
45 |
+
Get path to given model, download it if it doesn't exist.
|
46 |
+
"""
|
47 |
+
if model_name not in MODELS:
|
48 |
+
raise ValueError(f'Model {model_name} not found in available models.')
|
49 |
+
model_path = hf_hub_download(repo_id="Manmay/tortoise-tts", filename=model_name, cache_dir=models_dir)
|
50 |
+
return model_path
|
51 |
+
|
52 |
+
|
53 |
+
def pad_or_truncate(t, length):
|
54 |
+
"""
|
55 |
+
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s.
|
56 |
+
"""
|
57 |
+
if t.shape[-1] == length:
|
58 |
+
return t
|
59 |
+
elif t.shape[-1] < length:
|
60 |
+
return F.pad(t, (0, length-t.shape[-1]))
|
61 |
+
else:
|
62 |
+
return t[..., :length]
|
63 |
+
|
64 |
+
|
65 |
+
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1):
|
66 |
+
"""
|
67 |
+
Helper function to load a GaussianDiffusion instance configured for use as a vocoder.
|
68 |
+
"""
|
69 |
+
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon',
|
70 |
+
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps),
|
71 |
+
conditioning_free=cond_free, conditioning_free_k=cond_free_k)
|
72 |
+
|
73 |
+
|
74 |
+
def format_conditioning(clip, cond_length=132300, device="cuda" if not torch.backends.mps.is_available() else 'mps'):
|
75 |
+
"""
|
76 |
+
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models.
|
77 |
+
"""
|
78 |
+
gap = clip.shape[-1] - cond_length
|
79 |
+
if gap < 0:
|
80 |
+
clip = F.pad(clip, pad=(0, abs(gap)))
|
81 |
+
elif gap > 0:
|
82 |
+
rand_start = random.randint(0, gap)
|
83 |
+
clip = clip[:, rand_start:rand_start + cond_length]
|
84 |
+
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0)
|
85 |
+
return mel_clip.unsqueeze(0).to(device)
|
86 |
+
|
87 |
+
|
88 |
+
def fix_autoregressive_output(codes, stop_token, complain=True):
|
89 |
+
"""
|
90 |
+
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was
|
91 |
+
trained on and what the autoregressive code generator creates (which has no padding or end).
|
92 |
+
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with
|
93 |
+
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE
|
94 |
+
and copying out the last few codes.
|
95 |
+
|
96 |
+
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar.
|
97 |
+
"""
|
98 |
+
# Strip off the autoregressive stop token and add padding.
|
99 |
+
stop_token_indices = (codes == stop_token).nonzero()
|
100 |
+
if len(stop_token_indices) == 0:
|
101 |
+
if complain:
|
102 |
+
print("No stop tokens found in one of the generated voice clips. This typically means the spoken audio is "
|
103 |
+
"too long. In some cases, the output will still be good, though. Listen to it and if it is missing words, "
|
104 |
+
"try breaking up your input text.")
|
105 |
+
return codes
|
106 |
+
else:
|
107 |
+
codes[stop_token_indices] = 83
|
108 |
+
stm = stop_token_indices.min().item()
|
109 |
+
codes[stm:] = 83
|
110 |
+
if stm - 3 < codes.shape[0]:
|
111 |
+
codes[-3] = 45
|
112 |
+
codes[-2] = 45
|
113 |
+
codes[-1] = 248
|
114 |
+
|
115 |
+
return codes
|
116 |
+
|
117 |
+
|
118 |
+
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_latents, temperature=1, verbose=True):
|
119 |
+
"""
|
120 |
+
Uses the specified diffusion model to convert discrete codes into a spectrogram.
|
121 |
+
"""
|
122 |
+
with torch.no_grad():
|
123 |
+
output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal.
|
124 |
+
output_shape = (latents.shape[0], 100, output_seq_len)
|
125 |
+
precomputed_embeddings = diffusion_model.timestep_independent(latents, conditioning_latents, output_seq_len, False)
|
126 |
+
|
127 |
+
noise = torch.randn(output_shape, device=latents.device) * temperature
|
128 |
+
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise,
|
129 |
+
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings},
|
130 |
+
progress=verbose)
|
131 |
+
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len]
|
132 |
+
|
133 |
+
|
134 |
+
def classify_audio_clip(clip):
|
135 |
+
"""
|
136 |
+
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise.
|
137 |
+
:param clip: torch tensor containing audio waveform data (get it from load_audio)
|
138 |
+
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real.
|
139 |
+
"""
|
140 |
+
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4,
|
141 |
+
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32,
|
142 |
+
dropout=0, kernel_size=5, distribute_zero_label=False)
|
143 |
+
classifier.load_state_dict(torch.load(get_model_path('classifier.pth'), map_location=torch.device('cpu')))
|
144 |
+
clip = clip.cpu().unsqueeze(0)
|
145 |
+
results = F.softmax(classifier(clip), dim=-1)
|
146 |
+
return results[0][0]
|
147 |
+
|
148 |
+
|
149 |
+
def pick_best_batch_size_for_gpu():
|
150 |
+
"""
|
151 |
+
Tries to pick a batch size that will fit in your GPU. These sizes aren't guaranteed to work, but they should give
|
152 |
+
you a good shot.
|
153 |
+
"""
|
154 |
+
if torch.cuda.is_available():
|
155 |
+
_, available = torch.cuda.mem_get_info()
|
156 |
+
availableGb = available / (1024 ** 3)
|
157 |
+
if availableGb > 14:
|
158 |
+
return 16
|
159 |
+
elif availableGb > 10:
|
160 |
+
return 8
|
161 |
+
elif availableGb > 7:
|
162 |
+
return 4
|
163 |
+
if torch.backends.mps.is_available():
|
164 |
+
import psutil
|
165 |
+
available = psutil.virtual_memory().total
|
166 |
+
availableGb = available / (1024 ** 3)
|
167 |
+
if availableGb > 14:
|
168 |
+
return 16
|
169 |
+
elif availableGb > 10:
|
170 |
+
return 8
|
171 |
+
elif availableGb > 7:
|
172 |
+
return 4
|
173 |
+
return 1
|
174 |
+
|
175 |
+
class TextToSpeech:
|
176 |
+
"""
|
177 |
+
Main entry point into Tortoise.
|
178 |
+
"""
|
179 |
+
|
180 |
+
def __init__(self, autoregressive_batch_size=None, models_dir=MODELS_DIR,
|
181 |
+
enable_redaction=True, kv_cache=False, use_deepspeed=False, half=False, device=None,
|
182 |
+
tokenizer_vocab_file=None, tokenizer_basic=False):
|
183 |
+
|
184 |
+
"""
|
185 |
+
Constructor
|
186 |
+
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing
|
187 |
+
GPU OOM errors. Larger numbers generates slightly faster.
|
188 |
+
:param models_dir: Where model weights are stored. This should only be specified if you are providing your own
|
189 |
+
models, otherwise use the defaults.
|
190 |
+
:param enable_redaction: When true, text enclosed in brackets are automatically redacted from the spoken output
|
191 |
+
(but are still rendered by the model). This can be used for prompt engineering.
|
192 |
+
Default is true.
|
193 |
+
:param device: Device to use when running the model. If omitted, the device will be automatically chosen.
|
194 |
+
"""
|
195 |
+
self.models_dir = models_dir
|
196 |
+
self.autoregressive_batch_size = pick_best_batch_size_for_gpu() if autoregressive_batch_size is None else autoregressive_batch_size
|
197 |
+
self.enable_redaction = enable_redaction
|
198 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else'cpu')
|
199 |
+
if torch.backends.mps.is_available():
|
200 |
+
self.device = torch.device('mps')
|
201 |
+
if self.enable_redaction:
|
202 |
+
self.aligner = Wav2VecAlignment()
|
203 |
+
|
204 |
+
self.tokenizer = VoiceBpeTokenizer(
|
205 |
+
vocab_file=tokenizer_vocab_file,
|
206 |
+
use_basic_cleaners=tokenizer_basic,
|
207 |
+
)
|
208 |
+
self.half = half
|
209 |
+
if os.path.exists(f'{models_dir}/autoregressive.ptt'):
|
210 |
+
# Assume this is a traced directory.
|
211 |
+
self.autoregressive = torch.jit.load(f'{models_dir}/autoregressive.ptt')
|
212 |
+
self.diffusion = torch.jit.load(f'{models_dir}/diffusion_decoder.ptt')
|
213 |
+
else:
|
214 |
+
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30,
|
215 |
+
model_dim=1024,
|
216 |
+
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False,
|
217 |
+
train_solo_embeddings=False).cpu().eval()
|
218 |
+
self.autoregressive.load_state_dict(torch.load(get_model_path('autoregressive.pth', models_dir)), strict=False)
|
219 |
+
self.autoregressive.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=kv_cache, half=self.half)
|
220 |
+
|
221 |
+
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200,
|
222 |
+
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16,
|
223 |
+
layer_drop=0, unconditioned_percentage=0).cpu().eval()
|
224 |
+
self.diffusion.load_state_dict(torch.load(get_model_path('diffusion_decoder.pth', models_dir)))
|
225 |
+
|
226 |
+
self.clvp = CLVP(dim_text=768, dim_speech=768, dim_latent=768, num_text_tokens=256, text_enc_depth=20,
|
227 |
+
text_seq_len=350, text_heads=12,
|
228 |
+
num_speech_tokens=8192, speech_enc_depth=20, speech_heads=12, speech_seq_len=430,
|
229 |
+
use_xformers=True).cpu().eval()
|
230 |
+
self.clvp.load_state_dict(torch.load(get_model_path('clvp2.pth', models_dir)))
|
231 |
+
self.cvvp = None # CVVP model is only loaded if used.
|
232 |
+
|
233 |
+
self.vocoder = UnivNetGenerator().cpu()
|
234 |
+
self.vocoder.load_state_dict(torch.load(get_model_path('vocoder.pth', models_dir), map_location=torch.device('cpu'))['model_g'])
|
235 |
+
self.vocoder.eval(inference=True)
|
236 |
+
|
237 |
+
# Random latent generators (RLGs) are loaded lazily.
|
238 |
+
self.rlg_auto = None
|
239 |
+
self.rlg_diffusion = None
|
240 |
+
@contextmanager
|
241 |
+
def temporary_cuda(self, model):
|
242 |
+
m = model.to(self.device)
|
243 |
+
yield m
|
244 |
+
m = model.cpu()
|
245 |
+
|
246 |
+
|
247 |
+
def load_cvvp(self):
|
248 |
+
"""Load CVVP model."""
|
249 |
+
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0,
|
250 |
+
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval()
|
251 |
+
self.cvvp.load_state_dict(torch.load(get_model_path('cvvp.pth', self.models_dir)))
|
252 |
+
|
253 |
+
def get_conditioning_latents(self, voice_samples, return_mels=False):
|
254 |
+
"""
|
255 |
+
Transforms one or more voice_samples into a tuple (autoregressive_conditioning_latent, diffusion_conditioning_latent).
|
256 |
+
These are expressive learned latents that encode aspects of the provided clips like voice, intonation, and acoustic
|
257 |
+
properties.
|
258 |
+
:param voice_samples: List of 2 or more ~10 second reference clips, which should be torch tensors containing 22.05kHz waveform data.
|
259 |
+
"""
|
260 |
+
with torch.no_grad():
|
261 |
+
voice_samples = [v.to(self.device) for v in voice_samples]
|
262 |
+
|
263 |
+
auto_conds = []
|
264 |
+
if not isinstance(voice_samples, list):
|
265 |
+
voice_samples = [voice_samples]
|
266 |
+
for vs in voice_samples:
|
267 |
+
auto_conds.append(format_conditioning(vs, device=self.device))
|
268 |
+
auto_conds = torch.stack(auto_conds, dim=1)
|
269 |
+
self.autoregressive = self.autoregressive.to(self.device)
|
270 |
+
auto_latent = self.autoregressive.get_conditioning(auto_conds)
|
271 |
+
self.autoregressive = self.autoregressive.cpu()
|
272 |
+
|
273 |
+
diffusion_conds = []
|
274 |
+
for sample in voice_samples:
|
275 |
+
# The diffuser operates at a sample rate of 24000 (except for the latent inputs)
|
276 |
+
sample = torchaudio.functional.resample(sample, 22050, 24000)
|
277 |
+
sample = pad_or_truncate(sample, 102400)
|
278 |
+
cond_mel = wav_to_univnet_mel(sample.to(self.device), do_normalization=False, device=self.device)
|
279 |
+
diffusion_conds.append(cond_mel)
|
280 |
+
diffusion_conds = torch.stack(diffusion_conds, dim=1)
|
281 |
+
|
282 |
+
self.diffusion = self.diffusion.to(self.device)
|
283 |
+
diffusion_latent = self.diffusion.get_conditioning(diffusion_conds)
|
284 |
+
self.diffusion = self.diffusion.cpu()
|
285 |
+
|
286 |
+
if return_mels:
|
287 |
+
return auto_latent, diffusion_latent, auto_conds, diffusion_conds
|
288 |
+
else:
|
289 |
+
return auto_latent, diffusion_latent
|
290 |
+
|
291 |
+
def get_random_conditioning_latents(self):
|
292 |
+
# Lazy-load the RLG models.
|
293 |
+
if self.rlg_auto is None:
|
294 |
+
self.rlg_auto = RandomLatentConverter(1024).eval()
|
295 |
+
self.rlg_auto.load_state_dict(torch.load(get_model_path('rlg_auto.pth', self.models_dir), map_location=torch.device('cpu')))
|
296 |
+
self.rlg_diffusion = RandomLatentConverter(2048).eval()
|
297 |
+
self.rlg_diffusion.load_state_dict(torch.load(get_model_path('rlg_diffuser.pth', self.models_dir), map_location=torch.device('cpu')))
|
298 |
+
with torch.no_grad():
|
299 |
+
return self.rlg_auto(torch.tensor([0.0])), self.rlg_diffusion(torch.tensor([0.0]))
|
300 |
+
|
301 |
+
def tts_with_preset(self, text, preset='fast', **kwargs):
|
302 |
+
"""
|
303 |
+
Calls TTS with one of a set of preset generation parameters. Options:
|
304 |
+
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest).
|
305 |
+
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference.
|
306 |
+
'standard': Very good quality. This is generally about as good as you are going to get.
|
307 |
+
'high_quality': Use if you want the absolute best. This is not really worth the compute, though.
|
308 |
+
"""
|
309 |
+
# Use generally found best tuning knobs for generation.
|
310 |
+
settings = {'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0,
|
311 |
+
'top_p': .8,
|
312 |
+
'cond_free_k': 2.0, 'diffusion_temperature': 1.0}
|
313 |
+
# Presets are defined here.
|
314 |
+
presets = {
|
315 |
+
'ultra_fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
|
316 |
+
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
|
317 |
+
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
|
318 |
+
'high_quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
|
319 |
+
}
|
320 |
+
settings.update(presets[preset])
|
321 |
+
settings.update(kwargs) # allow overriding of preset settings with kwargs
|
322 |
+
return self.tts(text, **settings)
|
323 |
+
|
324 |
+
def tts(self, text, voice_samples=None, conditioning_latents=None, k=1, verbose=True, use_deterministic_seed=None,
|
325 |
+
return_deterministic_state=False,
|
326 |
+
# autoregressive generation parameters follow
|
327 |
+
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500,
|
328 |
+
# CVVP parameters follow
|
329 |
+
cvvp_amount=.0,
|
330 |
+
# diffusion generation parameters follow
|
331 |
+
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0,
|
332 |
+
**hf_generate_kwargs):
|
333 |
+
"""
|
334 |
+
Produces an audio clip of the given text being spoken with the given reference voice.
|
335 |
+
:param text: Text to be spoken.
|
336 |
+
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data.
|
337 |
+
:param conditioning_latents: A tuple of (autoregressive_conditioning_latent, diffusion_conditioning_latent), which
|
338 |
+
can be provided in lieu of voice_samples. This is ignored unless voice_samples=None.
|
339 |
+
Conditioning latents can be retrieved via get_conditioning_latents().
|
340 |
+
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP model) clips are returned.
|
341 |
+
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true.
|
342 |
+
~~AUTOREGRESSIVE KNOBS~~
|
343 |
+
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP.
|
344 |
+
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great".
|
345 |
+
:param temperature: The softmax temperature of the autoregressive model.
|
346 |
+
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs.
|
347 |
+
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence
|
348 |
+
of long silences or "uhhhhhhs", etc.
|
349 |
+
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs.
|
350 |
+
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second.
|
351 |
+
:param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666
|
352 |
+
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but
|
353 |
+
could use some tuning.
|
354 |
+
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm.
|
355 |
+
~~CLVP-CVVP KNOBS~~
|
356 |
+
:param cvvp_amount: Controls the influence of the CVVP model in selecting the best output from the autoregressive model.
|
357 |
+
[0,1]. Values closer to 1 mean the CVVP model is more important, 0 disables the CVVP model.
|
358 |
+
~~DIFFUSION KNOBS~~
|
359 |
+
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine
|
360 |
+
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better,
|
361 |
+
however.
|
362 |
+
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for
|
363 |
+
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output
|
364 |
+
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and
|
365 |
+
dramatically improves realism.
|
366 |
+
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf].
|
367 |
+
As cond_free_k increases, the output becomes dominated by the conditioning-free signal.
|
368 |
+
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k
|
369 |
+
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0
|
370 |
+
are the "mean" prediction of the diffusion network and will sound bland and smeared.
|
371 |
+
~~OTHER STUFF~~
|
372 |
+
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer.
|
373 |
+
Extra keyword args fed to this function get forwarded directly to that API. Documentation
|
374 |
+
here: https://huggingface.co/docs/transformers/internal/generation_utils
|
375 |
+
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length.
|
376 |
+
Sample rate is 24kHz.
|
377 |
+
"""
|
378 |
+
deterministic_seed = self.deterministic_state(seed=use_deterministic_seed)
|
379 |
+
|
380 |
+
text_tokens = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).to(self.device)
|
381 |
+
text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
|
382 |
+
assert text_tokens.shape[-1] < 400, 'Too much text provided. Break the text up into separate segments and re-try inference.'
|
383 |
+
auto_conds = None
|
384 |
+
if voice_samples is not None:
|
385 |
+
auto_conditioning, diffusion_conditioning, auto_conds, _ = self.get_conditioning_latents(voice_samples, return_mels=True)
|
386 |
+
elif conditioning_latents is not None:
|
387 |
+
auto_conditioning, diffusion_conditioning = conditioning_latents
|
388 |
+
else:
|
389 |
+
auto_conditioning, diffusion_conditioning = self.get_random_conditioning_latents()
|
390 |
+
auto_conditioning = auto_conditioning.to(self.device)
|
391 |
+
diffusion_conditioning = diffusion_conditioning.to(self.device)
|
392 |
+
|
393 |
+
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k)
|
394 |
+
|
395 |
+
with torch.no_grad():
|
396 |
+
samples = []
|
397 |
+
num_batches = num_autoregressive_samples // self.autoregressive_batch_size
|
398 |
+
stop_mel_token = self.autoregressive.stop_mel_token
|
399 |
+
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output"
|
400 |
+
if verbose:
|
401 |
+
print("Generating autoregressive samples..")
|
402 |
+
if not torch.backends.mps.is_available():
|
403 |
+
with self.temporary_cuda(self.autoregressive
|
404 |
+
) as autoregressive, torch.autocast(device_type="cuda", dtype=torch.float16, enabled=self.half):
|
405 |
+
for b in tqdm(range(num_batches), disable=not verbose):
|
406 |
+
codes = autoregressive.inference_speech(auto_conditioning, text_tokens,
|
407 |
+
do_sample=True,
|
408 |
+
top_p=top_p,
|
409 |
+
temperature=temperature,
|
410 |
+
num_return_sequences=self.autoregressive_batch_size,
|
411 |
+
length_penalty=length_penalty,
|
412 |
+
repetition_penalty=repetition_penalty,
|
413 |
+
max_generate_length=max_mel_tokens,
|
414 |
+
**hf_generate_kwargs)
|
415 |
+
padding_needed = max_mel_tokens - codes.shape[1]
|
416 |
+
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
417 |
+
samples.append(codes)
|
418 |
+
else:
|
419 |
+
with self.temporary_cuda(self.autoregressive) as autoregressive:
|
420 |
+
for b in tqdm(range(num_batches), disable=not verbose):
|
421 |
+
codes = autoregressive.inference_speech(auto_conditioning, text_tokens,
|
422 |
+
do_sample=True,
|
423 |
+
top_p=top_p,
|
424 |
+
temperature=temperature,
|
425 |
+
num_return_sequences=self.autoregressive_batch_size,
|
426 |
+
length_penalty=length_penalty,
|
427 |
+
repetition_penalty=repetition_penalty,
|
428 |
+
max_generate_length=max_mel_tokens,
|
429 |
+
**hf_generate_kwargs)
|
430 |
+
padding_needed = max_mel_tokens - codes.shape[1]
|
431 |
+
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token)
|
432 |
+
samples.append(codes)
|
433 |
+
|
434 |
+
clip_results = []
|
435 |
+
|
436 |
+
if not torch.backends.mps.is_available():
|
437 |
+
with self.temporary_cuda(self.clvp) as clvp, torch.autocast(
|
438 |
+
device_type="cuda" if not torch.backends.mps.is_available() else 'mps', dtype=torch.float16, enabled=self.half
|
439 |
+
):
|
440 |
+
if cvvp_amount > 0:
|
441 |
+
if self.cvvp is None:
|
442 |
+
self.load_cvvp()
|
443 |
+
self.cvvp = self.cvvp.to(self.device)
|
444 |
+
if verbose:
|
445 |
+
if self.cvvp is None:
|
446 |
+
print("Computing best candidates using CLVP")
|
447 |
+
else:
|
448 |
+
print(f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%")
|
449 |
+
for batch in tqdm(samples, disable=not verbose):
|
450 |
+
for i in range(batch.shape[0]):
|
451 |
+
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
452 |
+
if cvvp_amount != 1:
|
453 |
+
clvp_out = clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False)
|
454 |
+
if auto_conds is not None and cvvp_amount > 0:
|
455 |
+
cvvp_accumulator = 0
|
456 |
+
for cl in range(auto_conds.shape[1]):
|
457 |
+
cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
|
458 |
+
cvvp = cvvp_accumulator / auto_conds.shape[1]
|
459 |
+
if cvvp_amount == 1:
|
460 |
+
clip_results.append(cvvp)
|
461 |
+
else:
|
462 |
+
clip_results.append(cvvp * cvvp_amount + clvp_out * (1-cvvp_amount))
|
463 |
+
else:
|
464 |
+
clip_results.append(clvp_out)
|
465 |
+
clip_results = torch.cat(clip_results, dim=0)
|
466 |
+
samples = torch.cat(samples, dim=0)
|
467 |
+
best_results = samples[torch.topk(clip_results, k=k).indices]
|
468 |
+
else:
|
469 |
+
with self.temporary_cuda(self.clvp) as clvp:
|
470 |
+
if cvvp_amount > 0:
|
471 |
+
if self.cvvp is None:
|
472 |
+
self.load_cvvp()
|
473 |
+
self.cvvp = self.cvvp.to(self.device)
|
474 |
+
if verbose:
|
475 |
+
if self.cvvp is None:
|
476 |
+
print("Computing best candidates using CLVP")
|
477 |
+
else:
|
478 |
+
print(f"Computing best candidates using CLVP {((1-cvvp_amount) * 100):2.0f}% and CVVP {(cvvp_amount * 100):2.0f}%")
|
479 |
+
for batch in tqdm(samples, disable=not verbose):
|
480 |
+
for i in range(batch.shape[0]):
|
481 |
+
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token)
|
482 |
+
if cvvp_amount != 1:
|
483 |
+
clvp_out = clvp(text_tokens.repeat(batch.shape[0], 1), batch, return_loss=False)
|
484 |
+
if auto_conds is not None and cvvp_amount > 0:
|
485 |
+
cvvp_accumulator = 0
|
486 |
+
for cl in range(auto_conds.shape[1]):
|
487 |
+
cvvp_accumulator = cvvp_accumulator + self.cvvp(auto_conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False)
|
488 |
+
cvvp = cvvp_accumulator / auto_conds.shape[1]
|
489 |
+
if cvvp_amount == 1:
|
490 |
+
clip_results.append(cvvp)
|
491 |
+
else:
|
492 |
+
clip_results.append(cvvp * cvvp_amount + clvp_out * (1-cvvp_amount))
|
493 |
+
else:
|
494 |
+
clip_results.append(clvp_out)
|
495 |
+
clip_results = torch.cat(clip_results, dim=0)
|
496 |
+
samples = torch.cat(samples, dim=0)
|
497 |
+
best_results = samples[torch.topk(clip_results, k=k).indices]
|
498 |
+
if self.cvvp is not None:
|
499 |
+
self.cvvp = self.cvvp.cpu()
|
500 |
+
del samples
|
501 |
+
|
502 |
+
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning
|
503 |
+
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these
|
504 |
+
# results, but will increase memory usage.
|
505 |
+
if not torch.backends.mps.is_available():
|
506 |
+
with self.temporary_cuda(
|
507 |
+
self.autoregressive
|
508 |
+
) as autoregressive, torch.autocast(
|
509 |
+
device_type="cuda" if not torch.backends.mps.is_available() else 'mps', dtype=torch.float16, enabled=self.half
|
510 |
+
):
|
511 |
+
best_latents = autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
|
512 |
+
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results,
|
513 |
+
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
|
514 |
+
return_latent=True, clip_inputs=False)
|
515 |
+
del auto_conditioning
|
516 |
+
else:
|
517 |
+
with self.temporary_cuda(
|
518 |
+
self.autoregressive
|
519 |
+
) as autoregressive:
|
520 |
+
best_latents = autoregressive(auto_conditioning.repeat(k, 1), text_tokens.repeat(k, 1),
|
521 |
+
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), best_results,
|
522 |
+
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=text_tokens.device),
|
523 |
+
return_latent=True, clip_inputs=False)
|
524 |
+
del auto_conditioning
|
525 |
+
|
526 |
+
if verbose:
|
527 |
+
print("Transforming autoregressive outputs into audio..")
|
528 |
+
wav_candidates = []
|
529 |
+
if not torch.backends.mps.is_available():
|
530 |
+
with self.temporary_cuda(self.diffusion) as diffusion, self.temporary_cuda(
|
531 |
+
self.vocoder
|
532 |
+
) as vocoder:
|
533 |
+
for b in range(best_results.shape[0]):
|
534 |
+
codes = best_results[b].unsqueeze(0)
|
535 |
+
latents = best_latents[b].unsqueeze(0)
|
536 |
+
|
537 |
+
# Find the first occurrence of the "calm" token and trim the codes to that.
|
538 |
+
ctokens = 0
|
539 |
+
for k in range(codes.shape[-1]):
|
540 |
+
if codes[0, k] == calm_token:
|
541 |
+
ctokens += 1
|
542 |
+
else:
|
543 |
+
ctokens = 0
|
544 |
+
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
545 |
+
latents = latents[:, :k]
|
546 |
+
break
|
547 |
+
mel = do_spectrogram_diffusion(diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature,
|
548 |
+
verbose=verbose)
|
549 |
+
wav = vocoder.inference(mel)
|
550 |
+
wav_candidates.append(wav.cpu())
|
551 |
+
else:
|
552 |
+
diffusion, vocoder = self.diffusion, self.vocoder
|
553 |
+
diffusion_conditioning = diffusion_conditioning.cpu()
|
554 |
+
for b in range(best_results.shape[0]):
|
555 |
+
codes = best_results[b].unsqueeze(0).cpu()
|
556 |
+
latents = best_latents[b].unsqueeze(0).cpu()
|
557 |
+
|
558 |
+
# Find the first occurrence of the "calm" token and trim the codes to that.
|
559 |
+
ctokens = 0
|
560 |
+
for k in range(codes.shape[-1]):
|
561 |
+
if codes[0, k] == calm_token:
|
562 |
+
ctokens += 1
|
563 |
+
else:
|
564 |
+
ctokens = 0
|
565 |
+
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech.
|
566 |
+
latents = latents[:, :k]
|
567 |
+
break
|
568 |
+
mel = do_spectrogram_diffusion(diffusion, diffuser, latents, diffusion_conditioning, temperature=diffusion_temperature,
|
569 |
+
verbose=verbose)
|
570 |
+
wav = vocoder.inference(mel)
|
571 |
+
wav_candidates.append(wav.cpu())
|
572 |
+
|
573 |
+
def potentially_redact(clip, text):
|
574 |
+
if self.enable_redaction:
|
575 |
+
return self.aligner.redact(clip.squeeze(1), text).unsqueeze(1)
|
576 |
+
return clip
|
577 |
+
wav_candidates = [potentially_redact(wav_candidate, text) for wav_candidate in wav_candidates]
|
578 |
+
|
579 |
+
if len(wav_candidates) > 1:
|
580 |
+
res = wav_candidates
|
581 |
+
else:
|
582 |
+
res = wav_candidates[0]
|
583 |
+
|
584 |
+
if return_deterministic_state:
|
585 |
+
return res, (deterministic_seed, text, voice_samples, conditioning_latents)
|
586 |
+
else:
|
587 |
+
return res
|
588 |
+
def deterministic_state(self, seed=None):
|
589 |
+
"""
|
590 |
+
Sets the random seeds that tortoise uses to the current time() and returns that seed so results can be
|
591 |
+
reproduced.
|
592 |
+
"""
|
593 |
+
seed = int(time()) if seed is None else seed
|
594 |
+
torch.manual_seed(seed)
|
595 |
+
random.seed(seed)
|
596 |
+
# Can't currently set this because of CUBLAS. TODO: potentially enable it if necessary.
|
597 |
+
# torch.use_deterministic_algorithms(True)
|
598 |
+
|
599 |
+
return seed
|