Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip -q install gradio
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import pipeline, GPT2Tokenizer, AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
from IPython.display import clear_output
|
6 |
+
import joblib, torch
|
7 |
+
|
8 |
+
############################################################################################
|
9 |
+
|
10 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
|
12 |
+
generator_name_0 = 'MasterAlex69/gpt2_edline'
|
13 |
+
generator_name_1 = 'MasterAlex69/gpt2_edline_gan'
|
14 |
+
|
15 |
+
generator_tokenizer_0 = GPT2Tokenizer.from_pretrained(generator_name_0)
|
16 |
+
generator_tokenizer_1 = GPT2Tokenizer.from_pretrained(generator_name_1)
|
17 |
+
|
18 |
+
generator_tokenizer_0.pad_token_id = generator_tokenizer_0.eos_token_id
|
19 |
+
generator_tokenizer_1.pad_token_id = generator_tokenizer_1.eos_token_id
|
20 |
+
|
21 |
+
generator_pipeline_0 = pipeline('text-generation', model = generator_name_0, tokenizer = generator_tokenizer_0, device = device)
|
22 |
+
generator_pipeline_1 = pipeline('text-generation', model = generator_name_1, tokenizer = generator_tokenizer_1, device = device)
|
23 |
+
|
24 |
+
generator_pkl_name_0 = 'generator_pkl_0.pkl'
|
25 |
+
generator_pkl_name_1 = 'generator_pkl_1.pkl'
|
26 |
+
|
27 |
+
joblib.dump(generator_pipeline_0, generator_pkl_name_0)
|
28 |
+
joblib.dump(generator_pipeline_1, generator_pkl_name_1)
|
29 |
+
|
30 |
+
generator_pipeline_0 = joblib.load('/content/' + generator_pkl_name_0)
|
31 |
+
generator_pipeline_1 = joblib.load('/content/' + generator_pkl_name_1)
|
32 |
+
|
33 |
+
############################################################################################
|
34 |
+
|
35 |
+
discriminator_name_0 = 'MasterAlex69/bert_edline'
|
36 |
+
discriminator_name_1 = 'MasterAlex69/bert_edline_gan'
|
37 |
+
|
38 |
+
discriminator_0 = AutoModelForSequenceClassification.from_pretrained(discriminator_name_0, ).to(device)
|
39 |
+
discriminator_1 = AutoModelForSequenceClassification.from_pretrained(discriminator_name_1).to(device)
|
40 |
+
|
41 |
+
discriminator_tokenizer_0 = AutoTokenizer.from_pretrained(discriminator_name_0)
|
42 |
+
discriminator_tokenizer_1 = AutoTokenizer.from_pretrained(discriminator_name_1)
|
43 |
+
|
44 |
+
discriminator_pkl_name_0 = 'discriminator_pkl_0.pkl'
|
45 |
+
discriminator_pkl_name_1 = 'discriminator_pkl_1.pkl'
|
46 |
+
|
47 |
+
joblib.dump(discriminator_0, discriminator_pkl_name_0)
|
48 |
+
joblib.dump(discriminator_1, discriminator_pkl_name_1)
|
49 |
+
|
50 |
+
discriminator_0 = joblib.load('/content/' + discriminator_pkl_name_0)
|
51 |
+
discriminator_1 = joblib.load('/content/' + discriminator_pkl_name_1)
|
52 |
+
|
53 |
+
discriminator_pkl_tokenizer_name_0 = 'discriminator_tokenizer_pkl_0.pkl'
|
54 |
+
discriminator_pkl_tokenizer_name_1 = 'discriminator_tokenizer_pkl_1.pkl'
|
55 |
+
|
56 |
+
joblib.dump(discriminator_tokenizer_0, discriminator_pkl_tokenizer_name_0)
|
57 |
+
joblib.dump(discriminator_tokenizer_1, discriminator_pkl_tokenizer_name_1)
|
58 |
+
|
59 |
+
discriminator_tokenizer_0 = joblib.load('/content/' + discriminator_pkl_tokenizer_name_0)
|
60 |
+
discriminator_tokenizer_1 = joblib.load('/content/' + discriminator_pkl_tokenizer_name_1)
|
61 |
+
|
62 |
+
############################################################################################
|
63 |
+
def generate_text_0():
|
64 |
+
return generator_pipeline_0("Строка состоит из символов", max_length = 225, truncation = False)[0]['generated_text']
|
65 |
+
|
66 |
+
def generate_text_1():
|
67 |
+
return generator_pipeline_1("Строка состоит из символов", max_length = 225, truncation = False)[0]['generated_text']
|
68 |
+
|
69 |
+
def discriminate_text_0(text):
|
70 |
+
|
71 |
+
inputs = discriminator_tokenizer_0(text
|
72 |
+
, return_tensors = "pt"
|
73 |
+
, padding = True
|
74 |
+
, truncation = True).to(device)
|
75 |
+
|
76 |
+
result = discriminator_0(**inputs).logits[:, -1]
|
77 |
+
return torch.round(torch.sigmoid(result)).long().tolist()[0]
|
78 |
+
|
79 |
+
def discriminate_text_1(text):
|
80 |
+
|
81 |
+
inputs = discriminator_tokenizer_1(text
|
82 |
+
, return_tensors = "pt"
|
83 |
+
, padding = True
|
84 |
+
, truncation = True).to(device)
|
85 |
+
|
86 |
+
result = discriminator_1(**inputs).logits[:, -1]
|
87 |
+
return torch.round(torch.sigmoid(result)).long().tolist()[0]
|
88 |
+
|
89 |
+
def d_test_0(count):
|
90 |
+
|
91 |
+
if count == "": count = 0
|
92 |
+
count = int(count)
|
93 |
+
if count == 0: return 'Введите количество итераций...'
|
94 |
+
if count > 256: return 'Максимальное количество итераций: 256.'
|
95 |
+
result = generator_pipeline_1(['Строка состоит из символов'] * count, max_length = 225, batch_size = count)
|
96 |
+
texts = [item['generated_text'] for sublist in result for item in sublist]
|
97 |
+
results = [discriminate_text_0(text) for text in texts]
|
98 |
+
|
99 |
+
i = 0
|
100 |
+
m = 0
|
101 |
+
for result in results:
|
102 |
+
|
103 |
+
real_result = 0
|
104 |
+
if get_correct_answer(texts[i]).find('(не корректно)') == -1: real_result = 1
|
105 |
+
if result == real_result: m += 1
|
106 |
+
i += 1
|
107 |
+
|
108 |
+
return str(round(m / count * 100, 2)) + '%'
|
109 |
+
|
110 |
+
def d_test_1(count):
|
111 |
+
|
112 |
+
if count == "": count = 0
|
113 |
+
count = int(count)
|
114 |
+
if count == 0: return 'Введите количество итераций...'
|
115 |
+
if count > 256: return 'Максимальное количество итераций: 256.'
|
116 |
+
result = generator_pipeline_1(['Строка состоит из символов'] * count, max_length = 225, batch_size = count)
|
117 |
+
texts = [item['generated_text'] for sublist in result for item in sublist]
|
118 |
+
results = [discriminate_text_1(text) for text in texts]
|
119 |
+
|
120 |
+
i = 0
|
121 |
+
m = 0
|
122 |
+
for result in results:
|
123 |
+
|
124 |
+
real_result = 0
|
125 |
+
if get_correct_answer(texts[i]).find('(не корректно)') == -1: real_result = 1
|
126 |
+
if result == real_result: m += 1
|
127 |
+
i += 1
|
128 |
+
|
129 |
+
return str(round(m / count * 100, 2)) + '%'
|
130 |
+
|
131 |
+
|
132 |
+
def test(count):
|
133 |
+
|
134 |
+
if count == "": count = 0
|
135 |
+
|
136 |
+
right = 0
|
137 |
+
count = int(count)
|
138 |
+
if count == 0: return 'Введите количество итераций...'
|
139 |
+
if count > 256: return 'Максимальное количество итераций: 256.'
|
140 |
+
|
141 |
+
result = generator_pipeline_1(['Строка состоит из символов'] * count, max_length = 225, batch_size = count)
|
142 |
+
texts = [item['generated_text'] for sublist in result for item in sublist]
|
143 |
+
|
144 |
+
for text in texts:
|
145 |
+
if get_correct_answer(text).find('не корректно') == -1: right += 1
|
146 |
+
|
147 |
+
return str(round(right / count * 100, 2)) + '%'
|
148 |
+
|
149 |
+
def test_base(count):
|
150 |
+
|
151 |
+
if count == "": count = 0
|
152 |
+
|
153 |
+
right = 0
|
154 |
+
count = int(count)
|
155 |
+
if count == 0: return 'Введите количество итераций...'
|
156 |
+
if count > 256: return 'Максимальное количество итераций: 256.'
|
157 |
+
|
158 |
+
result = generator_pipeline_0(['Строка состоит из символов'] * count, max_length = 225, batch_size = count)
|
159 |
+
texts = [item['generated_text'] for sublist in result for item in sublist]
|
160 |
+
|
161 |
+
for text in texts:
|
162 |
+
if get_correct_answer(text).find('не корректно') == -1: right += 1
|
163 |
+
|
164 |
+
return str(round(right / count * 100, 2)) + '%'
|
165 |
+
|
166 |
+
def get_correct_answer(t):
|
167 |
+
|
168 |
+
if len(t) == 0: return 'Введите задание...'
|
169 |
+
|
170 |
+
start_index = t.find("(")
|
171 |
+
end_index = t.find(")", start_index)
|
172 |
+
a = t[start_index + 8: end_index]
|
173 |
+
|
174 |
+
start_index = t.find("д символов ")
|
175 |
+
end_index = t.find(".", start_index)
|
176 |
+
c = t[start_index + 11 : end_index]
|
177 |
+
|
178 |
+
start_index = t.find("а: ")
|
179 |
+
end_index = t.find(".", start_index)
|
180 |
+
t = t[start_index + 3: end_index]
|
181 |
+
|
182 |
+
t = t.replace(c, '*')
|
183 |
+
|
184 |
+
max_length = 0
|
185 |
+
current_length = 0
|
186 |
+
|
187 |
+
for char in t:
|
188 |
+
if char == '*':
|
189 |
+
|
190 |
+
current_length += 1
|
191 |
+
if current_length > max_length: max_length = current_length
|
192 |
+
|
193 |
+
else: current_length = 0
|
194 |
+
|
195 |
+
return str(max_length) + (' (корректно)' if str(max_length) == a else ' (не корректно)')
|
196 |
+
|
197 |
+
############################################################################################
|
198 |
+
with gr.Blocks(theme = gr.themes.Monochrome()) as iface:
|
199 |
+
|
200 |
+
with gr.Row():
|
201 |
+
with gr.Column():
|
202 |
+
button_gen_0 = gr.Button("Сгенерировать задание (ДО)")
|
203 |
+
button_gen_0_output_text = gr.Textbox(label = "Результат генерации", interactive = False)
|
204 |
+
button_gen_0.click(fn = generate_text_0, outputs = button_gen_0_output_text)
|
205 |
+
|
206 |
+
with gr.Column():
|
207 |
+
button_gen_1 = gr.Button("Сгенерировать задание (ПОСЛЕ)")
|
208 |
+
button_gen_1_output_text = gr.Textbox(label="Результат генерации", interactive = False)
|
209 |
+
button_gen_1.click(fn = generate_text_1, outputs = button_gen_1_output_text)
|
210 |
+
|
211 |
+
with gr.Row():
|
212 |
+
with gr.Column():
|
213 |
+
button_test = gr.Button("Провести испытание (ДО) генератор")
|
214 |
+
test_input_text = gr.Textbox(label = "Количество итераций")
|
215 |
+
test_output_text = gr.Textbox(label = "Корректных заданий")
|
216 |
+
button_test.click(fn = test_base, inputs = test_input_text, outputs = test_output_text)
|
217 |
+
|
218 |
+
with gr.Column():
|
219 |
+
button_test_ = gr.Button("Провести испытание (ПОСЛЕ) генератор")
|
220 |
+
test_input_text_ = gr.Textbox(label = "Количество итераций")
|
221 |
+
test_output_text_ = gr.Textbox(label = "Корректных заданий")
|
222 |
+
button_test_.click(fn = test, inputs = test_input_text_, outputs = test_output_text_)
|
223 |
+
|
224 |
+
with gr.Row():
|
225 |
+
with gr.Column():
|
226 |
+
button_get_correct_answer = gr.Button("Получить правильный ответ")
|
227 |
+
get_correct_answer_input_text = gr.Textbox(label = "Задание")
|
228 |
+
get_correct_answer_output_text = gr.Textbox(label = "Ответ")
|
229 |
+
button_get_correct_answer.click(fn = get_correct_answer, inputs = get_correct_answer_input_text, outputs = get_correct_answer_output_text)
|
230 |
+
|
231 |
+
with gr.Row():
|
232 |
+
with gr.Column():
|
233 |
+
bn_test_d_0 = gr.Button("Провести испытание (ДО) дискриминатор")
|
234 |
+
bn_test_d_0_text_input = gr.Textbox(label = "Количество итераций")
|
235 |
+
bn_test_d_0_text_output = gr.Textbox(label = "Совпадений")
|
236 |
+
bn_test_d_0.click(fn = d_test_0, inputs = bn_test_d_0_text_input, outputs = bn_test_d_0_text_output)
|
237 |
+
|
238 |
+
with gr.Column():
|
239 |
+
bn_test_d_1 = gr.Button("Провести испытание (ПОСЛЕ) дискриминатор")
|
240 |
+
bn_test_d_1_text_input = gr.Textbox(label = "Количество итераций")
|
241 |
+
bn_test_d_1_text_output = gr.Textbox(label = "Совпадений")
|
242 |
+
bn_test_d_1.click(fn = d_test_1, inputs = bn_test_d_1_text_input, outputs = bn_test_d_1_text_output)
|
243 |
+
|
244 |
+
clear_output()
|
245 |
+
iface.launch(share = True, debug = False)
|