Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline, GPT2Tokenizer, AutoModelForSequenceClassification, AutoTokenizer
|
3 |
from IPython.display import clear_output
|
@@ -240,4 +241,24 @@ with gr.Blocks(theme = gr.themes.Monochrome()) as iface:
|
|
240 |
bn_test_d_1.click(fn = d_test_1, inputs = bn_test_d_1_text_input, outputs = bn_test_d_1_text_output)
|
241 |
|
242 |
clear_output()
|
243 |
-
iface.launch(share = True, debug = False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline, GPT2Tokenizer, AutoModelForSequenceClassification, AutoTokenizer
|
4 |
from IPython.display import clear_output
|
|
|
241 |
bn_test_d_1.click(fn = d_test_1, inputs = bn_test_d_1_text_input, outputs = bn_test_d_1_text_output)
|
242 |
|
243 |
clear_output()
|
244 |
+
iface.launch(share = True, debug = False)
|
245 |
+
'''
|
246 |
+
|
247 |
+
import gradio as gr
|
248 |
+
from transformers import pipeline
|
249 |
+
|
250 |
+
pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
251 |
+
|
252 |
+
def predict(input_img):
|
253 |
+
predictions = pipeline(input_img)
|
254 |
+
return input_img, {p["label"]: p["score"] for p in predictions}
|
255 |
+
|
256 |
+
gradio_app = gr.Interface(
|
257 |
+
predict,
|
258 |
+
inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
259 |
+
outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
260 |
+
title="Hot Dog? Or Not?",
|
261 |
+
)
|
262 |
+
|
263 |
+
if __name__ == "__main__":
|
264 |
+
gradio_app.launch()
|